会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • System and process for dominance classification for insurance underwriting suitable for use by an automated system
    • 适用于自动化系统的保险承保优势分类系统和流程
    • US07567914B2
    • 2009-07-28
    • US10425723
    • 2003-04-30
    • Piero Patrone BonissoneNaresh Sundaram Iyer
    • Piero Patrone BonissoneNaresh Sundaram Iyer
    • G06Q40/00
    • G06Q10/10G06F19/00G06Q40/02G06Q40/08G06Q50/22G06Q50/24
    • A risk classification technique that exploits the existing risk structure of the decision problem in order to produce risk categorizations for new candidates is described. The technique makes use of a set of candidates for which risk categories have already been assigned (in the case of insurance underwriting, for example, this would pertain to the premium class assigned to an application). Using this set of labeled candidates, the technique produces two subsets for each risk category: the Pareto-best subset and the Pareto-worst subset by using Dominance. These two subsets can be seen as representing the least risky and the most risky candidates within a given risk category. If there are a sufficient number of candidates in these two subsets, then the candidates in these two subsets can be seen as samples from the two hypothetical risk surfaces in the feature space that bound the risk category from above and below respectively. A new candidate is assigned a risk category by verifying if the candidate lies within these two bounding risk surfaces.
    • 描述了利用现有风险决策问题的风险分类技术,以便为新候选人提供风险分类。 该技术利用已经分配了风险类别的一组候选人(在保险承保的情况下,例如,这将涉及分配给应用程序的溢价级别)。 使用这组标记候选者,该技术为每个风险类别产生两个子集:通过使用Dominance,帕累托最佳子集和帕累托最差子集。 这两个子集可以被视为代表风险类别中风险最低,风险最高的候选人。 如果这两个子集中有足够数量的候选人,那么这两个子集中的候选人可以被看作是从特征空间的两个假设风险面的样本,分别从上下分别界定风险类别。 通过验证候选人是否位于这两个边界风险表面内,为新的候选人分配了风险类别。
    • 6. 发明授权
    • Multi-criterial decision making system and method
    • 多标准决策制度和方法
    • US07437343B1
    • 2008-10-14
    • US11553126
    • 2006-10-26
    • John R. JosephsonBalakrishnan ChandrasekaranMark CarrollNaresh Sundaram Iyer
    • John R. JosephsonBalakrishnan ChandrasekaranMark CarrollNaresh Sundaram Iyer
    • G06F17/00G06N5/04
    • G06Q10/06Y10S707/99933
    • An architecture is disclosed for assistance with exploration of design and other decision spaces and for making decisions. These decision spaces may be very large. The architecture consists of three main components: A Seeker acquires candidates by generating or retrieving them, along with their scores according to one or more criteria. A Filter locates a relatively small number of promising candidates that are retained for further analysis. Various filters may be used to locate the promising candidates. A Viewer allows a user to examine trade-off diagrams, and other linked displays, that present the filtered candidates for evaluation, analysis, further exploration, and narrowing the choice set. The computational load of the Seeker may be distributed among a large number of clients in a client-server computing environment.
    • 披露了一种架构,用于协助探索设计和其他决策空间以及作出决策。 这些决策空间可能非常大。 该架构由三个主要组成部分组成:寻求者根据一个或多个标准通过生成或检索它们以及其分数来获取候选者。 过滤器定位了相对较少数量的有希望的候选人,用于进一步分析。 可以使用各种滤波器来定位有希望的候选者。 查看器允许用户检查权衡图和其他链接显示,呈现过滤的候选人进行评估,分析,进一步探索和缩小选择集。 Seeker的计算负载可以分布在客户端 - 服务器计算环境中的大量客户端之间。
    • 7. 发明授权
    • Multi-criterial decision making system and method
    • 多标准决策制度和方法
    • US07155423B1
    • 2006-12-26
    • US09717332
    • 2000-11-20
    • John R. JosephsonBalakrishran ChandrasekaranMark CarrollNaresh Sundaram Iyer
    • John R. JosephsonBalakrishran ChandrasekaranMark CarrollNaresh Sundaram Iyer
    • G06F17/00G06N7/04
    • G06Q10/06Y10S707/99933
    • An architecture is disclosed for assistance with exploration of design and other decision spaces and for making decisions. These decision spaces may be very large. The architecture consists of three main components: A Seeker acquires candidates by generating or retrieving them, along with their scores according to one or more criteria. A Filter locates a relatively small number of promising candidates that are retained for further analysis. Various filters may be used to locate the promising candidates. A Viewer allows a user to examine trade-off diagrams, and other linked displays, that present the filtered candidates for evaluation, analysis, further exploration, and narrowing the choice set. The computational load of the Seeker may be distributed among a large number of clients in a client-server computing environment.
    • 披露了一种架构,用于协助探索设计和其他决策空间以及作出决策。 这些决策空间可能非常大。 该架构由三个主要组成部分组成:寻求者根据一个或多个标准通过生成或检索它们以及其分数来获取候选者。 过滤器定位了相对较少数量的有希望的候选人,用于进一步分析。 可以使用各种滤波器来定位有希望的候选者。 查看器允许用户检查权衡图和其他链接显示,呈现过滤的候选人进行评估,分析,进一步探索和缩小选择集。 Seeker的计算负载可以分布在客户端 - 服务器计算环境中的大量客户端之间。
    • 8. 发明授权
    • System and process for a fusion classification for insurance underwriting suitable for use by an automated system
    • 用于融合分类的系统和过程,适用于自动化系统使用的保险承保
    • US08214314B2
    • 2012-07-03
    • US12131545
    • 2008-06-02
    • Piero Patrone BonissoneKareem Sherif AggourRajesh Venkat SubbuWeizhong YanNaresh Sundaram IyerAnindya Chakraborty
    • Piero Patrone BonissoneKareem Sherif AggourRajesh Venkat SubbuWeizhong YanNaresh Sundaram IyerAnindya Chakraborty
    • G06F17/00G06N5/02
    • G06Q40/08G06Q40/00
    • A method and system for fusing a collection of classifiers used for an automated insurance underwriting system and/or its quality assurance is described. Specifically, the outputs of a collection of classifiers are fused. The fusion of the data will typically result in some amount of consensus and some amount of conflict among the classifiers. The consensus will be measured and used to estimate a degree of confidence in the fused decisions. Based on the decision and degree of confidence of the fusion and the decision and degree of confidence of the production decision engine, a comparison module may then be used to identify cases for audit, cases for augmenting the training/test sets for re-tuning production decision engine, cases for review, or may simply trigger a record of its occurrence for tracking purposes. The fusion can compensate for the potential correlation among the classifiers. The reliability of each classifier can be represented by a static or dynamic discounting factor, which will reflect the expected accuracy of the classifier. A static discounting factor is used to represent a prior expectation about the classifier's reliability, e.g., it might be based on the average past accuracy of the model, while a dynamic discounting is used to represent a conditional assessment of the classifier's reliability, e.g., whenever a classifier bases its output on an insufficient number of points it is not reliable.
    • 描述用于融合用于自动保险承保系统的分类器集合和/或其质量保证的方法和系统。 具体来说,分类器的集合的输出被融合。 数据的融合通常会导致一些共识和分类器之间的一些冲突。 共识将被测量并用于估计融合决策的信心程度。 根据融合的决定和信心程度以及生产​​决策引擎的决策和决策程度,然后可以使用比较模块来识别审计案例,增加用于重新调整生产的培训/测试集的案例 决策引擎,审查案例,或者可以简单地触发其发生记录以进行跟踪。 融合可以补偿分类器之间的潜在相关性。 每个分类器的可靠性可以由静态或动态折扣因子表示,这将反映分类器的预期准确性。 静态折扣因子用于表示对分类器的可靠性的先前期望,例如,可以基于模型的平均过去精度,而使用动态贴现来表示分类器的可靠性的条件评估,例如,每当 分类器的输出基于不可靠的点数不足。