会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Remote plasma enhanced CVD method and apparatus for growing an epitaxial
semiconductor layer
    • 用于生长外延半导体层的远程等离子体增强CVD方法和装置
    • US5180435A
    • 1993-01-19
    • US604245
    • 1990-10-29
    • Robert J. MarkunasRobert HendryRonald A. Rudder
    • Robert J. MarkunasRobert HendryRonald A. Rudder
    • C23C16/22C23C16/452C30B25/10
    • C30B25/105C23C16/22C23C16/452C30B29/06
    • A remote plasma enhanced CVD apparatus and method for growing semiconductor layers on a substrate, wherein a intermediate feed gas, which does not itself contain constituent elements to be deposited, is first activated in an activation region to produce plural reactive species of the feed gas. These reactive species are then spatially filtered to remove selected of the reactive species, leaving only other, typically metastable, species which are then mixed with a carrier gas including constituent elements to be deposited on the substrate. During this mixing, the selected spatially filtered reactive species of the feed gas chemically interacts, i.e., partially dissociates and activates, in the gas phase, the carrier gas, with the process variables being selected so that there is no back-diffusion of gases or reactive species into the feed gas activation region. The dissociated and activated carrier gas along with the surviving reactive species of the feed gas then flows to the substrate. At the substrate, the surviving reactive species of the feed gas further dissociate the carrier gas and order the activated carrier gas species on the substrate whereby the desired epitaxial semiconductor layer is grown on the substrate.
    • 用于在衬底上生长半导体层的远程等离子体增强CVD装置和方法,其中中间进料气体本身不含有待沉积的构成元素,首先在活化区域中活化,以产生多种反应性物质的进料气体。 然后将这些反应性物质进行空间过滤以除去所选择的反应性物质,仅留下其它通常为亚稳态的物质,然后将其与包含待沉积在基底上的构成元素的载气混合。 在该混合期间,所选择的空间过滤的进料气体的反应性物质在气相中化学相互作用,即在气相中部分解离并活化载气,其中选择工艺变量,使得不存在气体的反向扩散或 反应性物质进入进料气体活化区域。 然后将解离和活化的载气与进料气体的存活反应性物质一起流入基材。 在衬底上,进料气体的存活的反应性物质进一步离解载气并且将活化的载气物质排列在衬底上,从而在衬底上生长期望的外延半导体层。
    • 2. 发明授权
    • Remote plasma enhanced CVD method and apparatus for growing an epitaxial
semconductor layer
    • 用于生长外延半导体层的远程等离子体增强CVD方法和装置
    • US5018479A
    • 1991-05-28
    • US375949
    • 1989-08-10
    • Robert J. MarkunasRobert HendryRonald A. Rudder
    • Robert J. MarkunasRobert HendryRonald A. Rudder
    • C23C16/22C23C16/452C30B25/10
    • C30B25/105C23C16/22C23C16/452C30B29/06
    • A remote plasma enhanced CVD apparatus and method for growing semiconductor layers on a substrate, wherein an intermediate feed gas, which does not itself contain constituent elements to be deposited, is first activated in an activation region to produce plural reactive species of the feed gas. These reactive species are then spatially filtered to remove selected of the reactive species, leaving only other, typically metastable, species which are then mixed with a carrier gas including constituent elements to be deposited on the substrate. During this mixing, the selected spatially filtered reactive species of the feed gas chemically interacts, i.e., partially dissociates and activates, in the gas phase, the carrier gas, with the process variables being selected so that there is no back-diffusion of gases or reactive species into the feed gas activation region. The dissociated and activated carrier gas along with the surviving reactive species of the feed gas then flows to the substrate. At the substrate, the surviving reactive species of the feed gas further dissociate the carrier gas and order the activated carrier gas species on the substrate whereby the desired epitaxial semiconductor layer is grown on the substrate.
    • 用于在衬底上生长半导体层的远程等离子体增强CVD装置和方法,其中首先在活化区域中激活不本身含有待沉积的构成元素的中间进料气体,以产生多种反应物质的进料气体。 然后将这些反应性物质进行空间过滤以除去所选择的反应性物质,仅留下其它通常为亚稳态的物质,然后将其与包含待沉积在基底上的构成元素的载气混合。 在该混合期间,所选择的空间过滤的进料气体的反应性物质在气相中化学相互作用,即在气相中部分解离并活化载气,其中选择工艺变量,使得不存在气体的反向扩散或 反应性物质进入进料气体活化区域。 然后将解离和活化的载气与进料气体的存活反应性物质一起流入基材。 在衬底上,进料气体的存活的反应性物质进一步离解载气并且将活化的载气物质排列在衬底上,从而在衬底上生长期望的外延半导体层。
    • 3. 发明授权
    • Remote plasma enhanced CVD method for growing an epitaxial semiconductor
layer
    • 用于生长外延半导体层的远程等离子体增强CVD方法
    • US4870030A
    • 1989-09-26
    • US100477
    • 1987-09-24
    • Robert J. MarkunasRobert HendryRonald A. Rudder
    • Robert J. MarkunasRobert HendryRonald A. Rudder
    • C23C16/22C23C16/452C30B25/10
    • C30B25/105C23C16/22C23C16/452C30B29/06Y10S148/006Y10S148/025Y10S148/045
    • A remote plasma enhanced CVD apparatus and method for growing semiconductor layers on a substrate, wherein an intermediate feed gas, which does not itself contain constituent elements to be deposited, is first activated in an activation region to produce plural reactive species of the feed gas. These reactive species are then spatially filtered to remove selected of the reactive species, leaving only other, typically metastable, species which are then mixed with a carrier gas including constituent elements to be deposited on the substrate. During this mixing, the selected spatially filtered reactive species of the feed gas chemically interacts, i.e., partially dissociates and activates, in the gas phase, the carrier gas, with the process variables being selected so that there is no back-diffusion of gases or reactive species into the feed gas activation region. The dissociated and activated carrier gas along with the surviving reactive species of the feed gas then flows to the substrate. At the substrate, the surviving reactive species of the feed gas further dissociate the carrier gas and order the activated carrier gas species on the substrate whereby the desired epitaxial semiconductor layer is grown on the substrate.
    • 用于在衬底上生长半导体层的远程等离子体增强CVD装置和方法,其中首先在活化区域中激活不本身含有待沉积的构成元素的中间进料气体,以产生多种进料气体的反应性物质。 然后将这些反应性物质进行空间过滤以除去所选择的反应性物质,仅留下其它通常为亚稳态的物质,然后将其与包含待沉积在基底上的构成元素的载气混合。 在该混合期间,所选择的空间过滤的进料气体的反应性物质在气相中化学相互作用,即在气相中部分解离并活化载气,其中选择工艺变量,使得不存在气体的反向扩散或 反应性物质进入进料气体活化区域。 然后将解离和活化的载气与进料气体的存活反应性物质一起流入基材。 在衬底上,进料气体的存活的反应性物质进一步离解载气并且将活化的载气物质排列在衬底上,从而在衬底上生长期望的外延半导体层。
    • 4. 发明授权
    • Line plasma vapor phase deposition apparatus and method
    • 线等离子体气相沉积装置及方法
    • US5908565A
    • 1999-06-01
    • US383495
    • 1995-02-03
    • Tatsuo MoritaRobert J. MarkunasGill FountianRobert HendryMasataka Itoh
    • Tatsuo MoritaRobert J. MarkunasGill FountianRobert HendryMasataka Itoh
    • H05H1/46C23C16/44C23C16/452C23C16/455C23C16/50C23C16/54G02F1/136G02F1/1368H01J37/32H01L21/205H01L21/302H01L21/3065H01L21/31H01L21/316H01L21/318H01L21/321B23K10/00
    • H01J37/32357C23C16/452C23C16/54H01L21/321
    • A line plasma source (20) comprises a plasma chamber (30) configured so that plasma (32) is situated remotely and on-edge with respect to a polycrystalline silicon surface (20S) to be treated, thereby preventing damage to the surface, facilitating treatment of large substrates, and permitting low temperature operation. Active species exit the plasma chamber through a long narrow ("line") outlet aperture (36) in the plasma chamber to a reaction zone (W) whereat the active species react with a reaction gas on the polycrystalline silicon surface (e.g., to form a deposited thin film). The polycrystalline silicon surface is heated to a low temperature below 6000.degree. C. Hydrogen is removed from the reactive surface in the low temperature line plasma source by a chemical displacement reaction facilitated by choice of dominant active species (singlet delta state of molecular oxygen). Reaction by-products including hydrogen are removed by an exhaust system (100) comprising long narrow exhaust inlet apertures (114L,114R) extending adjacent and parallel to the outlet aperture of the plasma chamber. An ionizing electric field is coupled to the plasma across a smallest dimension of the plasma, resulting in uniform production of active species and accordingly uniform quality of the thin film. The polycrystalline silicon surface to be treated is translated with respect to the plasma line source in a direction perpendicular to the outlet aperture of the plasma line source for integrating thin film quality in the direction of translation (22).
    • 线等离子体源(20)包括等离子体室(30),其被配置为使得等离子体(32)相对于待处理的多晶硅表面(20S)远离和在边缘定位,从而防止对表面的损坏,促进 处理大基材,并允许低温操作。 活性物质通过等离子体室中的长狭窄(“线”)出口孔(36)离开等离子体室至反应区(W),其中活性物质与多晶硅表面上的反应气体反应(例如,形成 沉积的薄膜)。 多晶硅表面被加热到低于6000℃的低温。通过选择主要活性物质(分子氧的单态三态)促进的化学位移反应,从低温线等离子体源中的反应性表面除去氢。 包括氢的反应副产物通过排气系统(100)除去,排气系统(100)包括相邻并平行于等离子体室的出口孔延伸的长的狭窄的排气入口孔(114L,114R)。 电离电场通过等离子体的最小尺寸耦合到等离子体,导致活性物质的均匀产生和相应的薄膜质量均匀。 要处理的多晶硅表面相对于等离子体线源在垂直于等离子体线源的出口孔的方向上平移,用于在平移方向上整合薄膜质量(22)。