会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 8. 发明授权
    • Wavelength-sensitive detector comprising photoconductor units each having different types of elongated nanostructures
    • 波长敏感检测器包括各自具有不同类型的细长纳米结构的光电导体单元
    • US08232517B2
    • 2012-07-31
    • US12574531
    • 2009-10-06
    • Anne S. VerhulstWilfried Vandervorst
    • Anne S. VerhulstWilfried Vandervorst
    • H01L31/00
    • H01L31/0352H01L31/09Y10S977/954
    • A wavelength-sensitive detector is provided that is based on elongate nanostructures, e.g. nanowires. The elongate nanostructures are parallel with respect to a common substrate and they are grouped in at least first and second units of a plurality of parallel elongate nanostructures. The elongate nanostructures are positioned in between a first and second electrode, the first and second electrodes lying respectively in a first and second plane substantially perpendicular to the plane of substrate, whereby all elongate nanostructures in a same photoconductor unit are contacted by the same two electrodes. Circuitry is added to read out electrical signals from the photoconductor units. The electronic density of states of the elongate nanostructures in each unit is different, because the material, of which the elongate nanostructures are made, is different or because the diameter of the elongate nanostructures is different. Each unit of elongate nanostructures therefore gives a different response to incident photons such that wavelength-specific information can be derived with the device.
    • 提供了一种基于细长纳米结构的波长敏感检测器,例如。 纳米线 细长纳米结构相对于共同的基底是平行的,并且它们被分组成多个平行细长纳米结构的至少第一和第二单元。 细长纳米结构位于第一和第二电极之间,第一和第二电极分别位于基本上垂直于衬底平面的第一和第二平面中,由此相同光电导体单元中的所有细长纳米结构与相同的两个电极 。 添加电路以读取光电导体单元的电信号。 每个单元中细长纳米结构的电子状态密度是不同的,因为其制造细长纳米结构的材料是不同的,或者因为细长纳米结构的直径不同。 因此,每个单位的细长纳米结构对入射的光子给出不同的响应,使得可以用该器件导出波长特异性信息。
    • 9. 发明申请
    • TUNNEL EFFECT TRANSISTORS BASED ON ELONGATE MONOCRYSTALLINE NANOSTRUCTURES HAVING A HETEROSTRUCTURE
    • 基于具有异构结构的直链单结构纳米结构的隧道效应晶体管
    • US20120045879A1
    • 2012-02-23
    • US13286936
    • 2011-11-01
    • Anne S. VerhulstWilliam G. Vandenberghe
    • Anne S. VerhulstWilliam G. Vandenberghe
    • H01L21/336
    • H01L29/0665B82Y10/00H01L29/0673H01L29/0676H01L29/068H01L29/7391
    • Tunnel field-effect transistors (TFETs) are regarded as successors of metal-oxide semiconductor field-effect transistors (MOSFETs), but silicon-based TFETs typically suffer from low on-currents, a drawback related to the large resistance of the tunnel barrier. To achieve higher on-currents an elongate monocrystalline nanostructure-based TFET with a heterostructure made of a different semiconducting material (e.g. germanium (Ge)) is used. An elongate monocrystalline nanostructure made of a different semiconducting material is introduced which acts as source (or alternatively drain) region of the TFET. The introduction of the heterosection is such that the lattice mismatch between silicon and germanium does not result in a highly defective interface. A dynamic power reduction as well as a static power reduction can result, compared to conventional MOSFET configurations. Multiple layers of logic can therefore be envisioned with these elongate monocrystalline nanostructure Si/Ge TFETs resulting in ultra-high on-chip transistor densities.
    • 隧道场效应晶体管(TFET)被认为是金属氧化物半导体场效应晶体管(MOSFET)的后继者,但是硅基TFET通常具有低导通电流,这是与隧道势垒的大电阻相关的缺点。 为了实现更高的导通电流,使用具有由不同半导体材料(例如锗(Ge))制成的异质结构的细长单晶纳米结构基TFET。 引入由不同半导体材料制成的细长单晶纳米结构,其作为TFET的源(或者替代地,漏极)区域。 杂交的引入使得硅与锗之间的晶格失配不会导致高度缺陷的界面。 与常规MOSFET配置相比,可以实现动态功耗降低和静态功耗降低。 因此可以用这些细长单晶纳米结构Si / Ge TFET来设想多层逻辑,从而产生超高的片上晶体管密度。
    • 10. 发明授权
    • Wavelength-sensitive detector with elongate nanostructures
    • 具有细长纳米结构的波长敏感检测器
    • US07598482B1
    • 2009-10-06
    • US11475300
    • 2006-06-26
    • Anne S. VerhulstWilfried Vandervorst
    • Anne S. VerhulstWilfried Vandervorst
    • H01L31/00
    • H01L31/0352H01L31/09Y10S977/954
    • A wavelength-sensitive detector is provided that is based on elongate nanostructures, e.g. nanowires. The elongate nanostructures are parallel with respect to a common substrate and they are grouped in at least first and second units of a plurality of parallel elongate nanostructures. The elongate nanostructures are positioned in between a first and second electrode, the first and second electrodes lying respectively in a first and second plane substantially perpendicular to the plane of substrate, whereby all elongate nanostructures in a same photoconductor unit are contacted by the same two electrodes. Circuitry is added to read out electrical signals from the photoconductor units. The electronic density of states of the elongate nanostructures in each unit is different, because the material, of which the elongate nanostructures are made, is different or because the diameter of the elongate nanostructures is different. Each unit of elongate nanostructures therefore gives a different response to incident photons such that wavelength-specific information can be derived with the device.
    • 提供了一种基于细长纳米结构的波长敏感检测器,例如。 纳米线 细长纳米结构相对于共同的基底是平行的,并且它们被分组成多个平行细长纳米结构的至少第一和第二单元。 细长纳米结构位于第一和第二电极之间,第一和第二电极分别位于基本上垂直于衬底平面的第一和第二平面中,由此相同光电导体单元中的所有细长纳米结构与相同的两个电极 。 添加电路以读取光电导体单元的电信号。 每个单元中细长纳米结构的电子状态密度是不同的,因为其制造细长纳米结构的材料是不同的,或者因为细长纳米结构的直径不同。 因此,每个单位的细长纳米结构对入射的光子给出不同的响应,使得可以用该器件导出波长特异性信息。