会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明授权
    • Flow differentiation scheme for magnetic resonance angiography
    • 磁共振血管造影的流动分化方案
    • US5521502A
    • 1996-05-28
    • US232377
    • 1994-04-25
    • John M. Siegel, Jr.David N. Ku
    • John M. Siegel, Jr.David N. Ku
    • G01F1/704G01R33/561G01R33/563G01R33/48
    • G01F1/704G01R33/563G01R33/5615
    • A flow differentiation scheme is disclosed for magnetic resonance imaging (MRI) of fluid flow in regions of turbulent flow. The flow differentiation scheme comprises the steps of (1) obtaining a first magnetic resonance (MR) image of the region, (2) obtaining a second MR image of the same region with an imaging parameter or imaging sequence altered, and (3) logically differentiating the first and second images with respect to flow to create a difference image. The process may be enhanced by superimposing one of the original images, upon an image that has been flow differentiated. As a result, a substantial amount of the static signal is suppressed producing superior angiograms of diseased and undiseased blood vessels. Additionally, the scheme can be used to image any fluid flow in any body or thing.
    • 公开了用于湍流区域中流体流动的磁共振成像(MRI)的流动分化方案。 流动微分方案包括以下步骤:(1)获得该区域的第一磁共振(MR)图像,(2)用成像参数或成像序列改变获得相同区域的第二MR图像,以及(3)逻辑上 相对于流动来区分第一和第二图像以产生差异图像。 可以通过将原始图像中的一个重叠在已经被流分辨的图像上来增强该过程。 结果,大量的静电信号被抑制,从而产生患病和未发病的血管的优异血管造影。 此外,该方案可用于对任何身体或物体中的任何流体流进行成像。
    • 10. 发明授权
    • Flow-induced artifact elimination in magnetic resonance images
    • 磁共振图像中的流感神经消除
    • US5438992A
    • 1995-08-08
    • US146393
    • 1993-11-01
    • John M. Siegel, Jr.David N. KuJohn N. OshinskiRoderic I. Pettigrew
    • John M. Siegel, Jr.David N. KuJohn N. OshinskiRoderic I. Pettigrew
    • G01R33/56G01R33/563A61B5/055
    • G01R33/563G01R33/56
    • Magnetic resonance imaging of a blood vessel exhibits flow artifacts, or signal loss, around a constriction (26) due to turbulent fluid flow. Signal loss in a region (27) prior to the constricted region (26) is primarily caused by convective acceleration, and this signal loss is substantially eliminated by performing an acceleration compensation process. Signal loss in a region (32) situated after the constriction (26) is primarily caused by velocity fluctuations, and this signal loss is cured by an imaging process which does not rely on the phase of the electromagnetic excitation signal(s) for spatial localization. Examples of imaging processes for minimizing signal loss due to turbulence include a projection reconstruction process (34) and a two dimensional slice selection process (56). Further, the two dimensional slice selection process (56) may be used for generating instantaneous velocities of fluid flowing through a fluid channel. Also, if a number of instantaneous velocities are produced over a time period, then fluctuation velocities can be determined via time-resolved averaging.
    • 血管的磁共振成像由于湍流流动而在收缩(26)周围显示出流动假象或信号损失。 在收缩区域(26)之前的区域(27)中的信号损失主要由对流加速度引起,并且通过执行加速度补偿处理基本上消除了该信号损失。 位于收缩(26)之后的区域(32)中的信号损失主要是由速度波动引起的,并且该信号损失通过不依赖于用于空间定位的电磁激励信号的相位的成像过程来固化 。 用于使由湍流引起的信号损失最小化的成像处理的示例包括投影重建处理(34)和二维切片选择处理(56)​​。 此外,二维切片选择过程(56)可用于产生流过流体通道的流体的瞬时速度。 此外,如果在一段时间内产生多个瞬时速度,则可以通过时间分辨平均来确定波动速度。