会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Automatic Alignment of Magnetic Resonance Imaging (MRI) Brain Scan By Anatomic Landmarks
    • 磁共振成像(MRI)脑扫描自动对准解剖标志
    • US20090093706A1
    • 2009-04-09
    • US12165830
    • 2008-07-01
    • Li ZhangCarol L. NovakQing XuChong Chen
    • Li ZhangCarol L. NovakQing XuChong Chen
    • A61B5/055
    • A61B5/055A61B5/417A61B5/4504
    • A method to automatically align magnetic resonance (MR) brain scans for diagnostic scan planning, including: acquiring a three-dimensional (3D) localizer image of a patient; selecting a two-dimensional (2D) coronal view and a 2D transverse view from the localizer image; identifying a mid-sagittal plane (MSP) line in each of the coronal and transverse views and calculating a 3D MSP based on the MSP lines; reconstructing the localizer image based on an equation for the 3D MSP to obtain an image of the MSP of the patient's brain; identifying crista galli (CG) and tip of the occipital bone (TOB) in the image of the MSP of the patient's brain; calculating a transformation matrix based on the MSP, CG and TOB in the image and using the transformation matrix to obtain a scan plan for the patient; and outputting the scan plan for the patient.
    • 一种用于自动对准用于诊断扫描计划的磁共振(MR)脑扫描的方法,包括:获取患者的三维(3D)定位器图像; 从定位器图像中选择二维(2D)冠状视图和2D横向视图; 识别每个冠状和横向视图中的中矢状面(MSP)线,并基于MSP线计算3D MSP; 基于3D MSP的等式重建定位器图像以获得患者脑的MSP的图像; 在患者大脑的MSP图像中识别嵴(CG)和枕骨顶端(TOB); 基于图像中的MSP,CG和TOB计算变换矩阵,并使用变换矩阵获得患者的扫描方案; 并输出病人的扫描方案。
    • 3. 发明授权
    • Automatic alignment of magnetic resonance imaging (MRI) brain scan by anatomic landmarks
    • 通过解剖学标记自动对准磁共振成像(MRI)脑扫描
    • US08190232B2
    • 2012-05-29
    • US12165830
    • 2008-07-01
    • Li ZhangCarol L. NovakQing XuChong Chen
    • Li ZhangCarol L. NovakQing XuChong Chen
    • A61B5/05
    • A61B5/055A61B5/417A61B5/4504
    • A method to automatically align magnetic resonance (MR) brain scans for diagnostic scan planning, including: acquiring a three-dimensional (3D) localizer image of a patient; selecting a two-dimensional (2D) coronal view and a 2D transverse view from the localizer image; identifying a mid-sagittal plane (MSP) line in each of the coronal and transverse views and calculating a 3D MSP based on the MSP lines; reconstructing the localizer image based on an equation for the 3D MSP to obtain an image of the MSP of the patient's brain; identifying crista galli (CG) and tip of the occipital bone (TOB) in the image of the MSP of the patient's brain; calculating a transformation matrix based on the MSP, CG and TOB in the image and using the transformation matrix to obtain a scan plan for the patient; and outputting the scan plan for the patient.
    • 一种用于自动对准用于诊断扫描计划的磁共振(MR)脑扫描的方法,包括:获取患者的三维(3D)定位器图像; 从定位器图像中选择二维(2D)冠状视图和2D横向视图; 识别每个冠状和横向视图中的中矢状面(MSP)线,并基于MSP线计算3D MSP; 基于3D MSP的等式重建定位器图像以获得患者脑的MSP的图像; 在患者大脑的MSP图像中识别嵴(CG)和枕骨顶端(TOB); 基于图像中的MSP,CG和TOB计算变换矩阵,并使用变换矩阵获得患者的扫描方案; 并输出病人的扫描方案。
    • 5. 发明授权
    • System and method for magnetic resonance brain scan planning
    • 磁共振脑扫描计划的系统和方法
    • US08082019B2
    • 2011-12-20
    • US11856104
    • 2007-09-17
    • Li ZhangCarol NovakHong ChenQing Xu
    • Li ZhangCarol NovakHong ChenQing Xu
    • A61B5/00
    • A61B5/055A61B5/0037A61B5/6814G01R33/4833
    • A method and system for automatic MR brain scan planning is disclosed. The method utilizes a set of 2D orthogonal localizer images to determine scanning planes for 3D diagnostic MR scans. A location of the mid-sagittal plane (MSP) is detected in each of a transversal localizer image and a coronal localizer image. A sagittal scanning plane is determined based on the location of the MSP in the transversal and coronal localizer images. A diagnostic sagittal MR scan is then acquired based on the sagittal scanning plane. The corpus callosum CC is segmented in a sagittal MR image slice resulting from the diagnostic sagittal MR scan. A transversal scanning plane can be determined based on a location of the CC in the sagittal MR image slice and the location of the MSP in the coronal localizer image, and a coronal scanning plane can be determined based on the location of the CC in the sagittal MR image slice and the location of the MSP in the transversal localizer image.
    • 公开了用于自动MR脑扫描计划的方法和系统。 该方法利用一组2D正交定位图像来确定3D诊断MR扫描的扫描平面。 在横向定位器图像和冠状定位器图像中的每一个中检测到中间矢状面(MSP)的位置。 基于MSP在横向和冠状定位器图像中的位置来确定矢状扫描平面。 然后基于矢状扫描平面获取诊断矢状MR扫描。 胼um体CC被分割成由诊断矢状MR扫描得到的矢状MR图像切片。 可以基于矢状位MR图像切片中的CC的位置和冠状位置定位器图像中的MSP的位置来确定横向扫描平面,并且可以基于CC在矢状位置中的位置来确定冠状扫描平面 MR图像切片和MSP在横向定位器图像中的位置。
    • 6. 发明授权
    • System and method for corpus callosum segmentation in magnetic resonance images
    • 磁共振图像中胼for体分割的系统和方法
    • US07983464B2
    • 2011-07-19
    • US11782828
    • 2007-07-25
    • Qing XuHong ChenLi Zhang
    • Qing XuHong ChenLi Zhang
    • G06K9/00
    • G06K9/6209G06K9/6207G06T7/0012G06T7/12G06T7/149G06T2207/10088G06T2207/20124G06T2207/30016
    • A method and system for segmentation of the corpus callosum in MR brain images is disclosed. The method utilizes an active shape model (ASM) with confidence weighting to iteratively adjust an initial corpus callosum contour to define a boundary of the corpus callosum in an MR image. An ASM is used to determine a displacement value in a perpendicular direction of the corpus callosum contour for each node of the corpus callosum contour. The displacement value for each node is then weighted based on a confidence of that displacement value. The ASM is then fitted to the adjusted contour. These steps are iteratively performed until the contour converges to define the corpus callosum boundary. This boundary can be further refined based on intensity distributions in object and background regions defined by the boundary.
    • 公开了MR脑图像中胼the体分割的方法和系统。 该方法利用具有置信度加权的活动形状模型(ASM)来迭代地调整初始语料库胼los体轮廓,以定义MR图像中胼the体的边界。 ASM用于确定胼the体轮廓的每个节点的胼um体轮廓的垂直方向上的位移值。 然后基于该位移值的置信度对每个节点的位移值加权。 然后将ASM安装到调整后的轮廓上。 迭代地执行这些步骤,直到轮廓收敛以定义胼the体边界。 该边界可以根据由边界定义的对象和背景区域中的强度分布进一步改进。
    • 7. 发明申请
    • System and Method for Corpus Callosum Segmentation in Magnetic Resonance Images
    • 磁共振图像中胼los体分割的系统和方法
    • US20080037848A1
    • 2008-02-14
    • US11782828
    • 2007-07-25
    • Qing XuHong ChenLi Zhang
    • Qing XuHong ChenLi Zhang
    • G06K9/00
    • G06K9/6209G06K9/6207G06T7/0012G06T7/12G06T7/149G06T2207/10088G06T2207/20124G06T2207/30016
    • A method and system for segmentation of the corpus callosum in MR brain images is disclosed. The method utilizes an active shape model (ASM) with confidence weighting to iteratively adjust an initial corpus callosum contour to define a boundary of the corpus callosum in an MR image. An ASM is used to determine a displacement value in a perpendicular direction of the corpus callosum contour for each node of the corpus callosum contour. The displacement value for each node is then weighted based on a confidence of that displacement value. The ASM is then fitted to the adjusted contour. These steps are iteratively performed until the contour converges to define the corpus callosum boundary. This boundary can be further refined based on intensity distributions in object and background regions defined by the boundary.
    • 公开了MR脑图像中胼the体分割的方法和系统。 该方法利用具有置信度加权的活动形状模型(ASM)来迭代地调整初始语料库胼los体轮廓,以定义MR图像中胼the体的边界。 ASM用于确定胼the体轮廓的每个节点的胼um体轮廓的垂直方向上的位移值。 然后基于该位移值的置信度对每个节点的位移值加权。 然后将ASM安装到调整后的轮廓上。 迭代地执行这些步骤,直到轮廓收敛以定义胼the体边界。 该边界可以根据由边界定义的对象和背景区域中的强度分布进一步改进。
    • 8. 发明申请
    • System and Method for Magnetic Resonance Brain Scan Planning
    • 磁共振脑扫描规划系统与方法
    • US20080071163A1
    • 2008-03-20
    • US11856104
    • 2007-09-17
    • Li ZhangCarol NovaxHong ChenQing Xu
    • Li ZhangCarol NovaxHong ChenQing Xu
    • A61B5/055
    • A61B5/055A61B5/0037A61B5/6814G01R33/4833
    • A method and system for automatic MR brain scan planning is disclosed. The method utilizes a set of 2D orthogonal localizer images to determine scanning planes for 3D diagnostic MR scans. A location of the mid-sagittal plane (MSP) is detected in each of a transversal localizer image and a coronal localizer image. A sagittal scanning plane is determined based on the location of the MSP in the transversal and coronal localizer images. A diagnostic sagittal MR scan is then acquired based on the sagittal scanning plane. The corpus callosum CC is segmented in a sagittal MR image slice resulting from the diagnostic sagittal MR scan. A transversal scanning plane can be determined based on a location of the CC in the sagittal MR image slice and the location of the MSP in the coronal localizer image, and a coronal scanning plane can be determined based on the location of the CC in the sagittal MR image slice and the location of the MSP in the transversal localizer image.
    • 公开了用于自动MR脑扫描计划的方法和系统。 该方法利用一组2D正交定位图像来确定3D诊断MR扫描的扫描平面。 在横向定位器图像和冠状定位器图像中的每一个中检测到中间矢状面(MSP)的位置。 基于MSP在横向和冠状定位器图像中的位置来确定矢状扫描平面。 然后基于矢状扫描平面获取诊断矢状MR扫描。 胼um体CC被分割成由诊断矢状MR扫描得到的矢状MR图像切片。 可以基于矢状位MR图像切片中的CC的位置和冠状位置定位器图像中的MSP的位置来确定横向扫描平面,并且可以基于CC在矢状位置中的位置来确定冠状扫描平面 MR图像切片和MSP在横向定位器图像中的位置。
    • 9. 外观设计
    • Multipurpose foldable projection screen with stand
    • USD1022009S1
    • 2024-04-09
    • US29836399
    • 2022-04-26
    • Li Zhang
    • Li Zhang
    • FIG. 1. is a rear perspective view of a multipurpose foldable projection screen with stand showing my ornamental design;
      FIG. 2 is a front perspective view of a Multipurpose foldable projection screen with stand showing my ornamental design;
      FIG. 3 is a front view of a Multipurpose foldable projection screen with stand showing my ornamental design;
      FIG. 4 is a rear view of a Multipurpose foldable projection screen with stand showing my ornamental design;
      FIG. 5 is a bottom view of a Multipurpose foldable projection screen with stand showing my ornamental design;
      FIG. 6 is a top view of a Multipurpose foldable projection screen with stand showing my ornamental design;
      FIG. 7 is a left view of a multipurpose foldable projection screen with stand showing my ornamental design;
      FIG. 8 is a right view of a multipurpose foldable projection screen with stand showing my ornamental design.
      FIG. 9 is an enlarged view of the area of FIG. 1 that is labeled with reference number 9.
      FIG. 10 is an enlarged view of the area of FIG. 1 that is labeled with reference number 10.
      FIG. 11 is an enlarged view of the area of FIG. 2 that is labeled with reference number 11; and,
      FIG. 12 is an enlarged view of the area of FIG. 2 that is labeled with reference number 12.
      The dash-dot-dash broken lines demarcate enlarged views and form no part of the claimed design.