会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method and apparatus for estimating phone class probabilities
a-posteriori using a decision tree
    • 用于使用决策树估计电话类概率的方法和装置
    • US5680509A
    • 1997-10-21
    • US312584
    • 1994-09-27
    • Ponani S. GopalakrishnanDavid NahamooMukund PadmanabhanMichael Alan Picheny
    • Ponani S. GopalakrishnanDavid NahamooMukund PadmanabhanMichael Alan Picheny
    • G10L15/06G10L15/08G10L5/06
    • G10L15/063G10L15/08
    • A method and apparatus for estimating the probability of phones, a-posteriori, in the context of not only the acoustic feature at that time, but also the acoustic features in the vicinity of the current time, and its use in cutting down the search-space in a speech recognition system. The method constructs and uses a decision tree, with the predictors of the decision tree being the vector-quantized acoustic feature vectors at the current time, and in the vicinity of the current time. The process starts with an enumeration of all (predictor, class) events in the training data at the root node, and successively partitions the data at a node according to the most informative split at that node. An iterative algorithm is used to design the binary partitioning. After the construction of the tree is completed, the probability distribution of the predicted class is stored at all of its terminal leaves. The decision tree is used during the decoding process by tracing a path down to one of its leaves, based on the answers to binary questions about the vector-quantized acoustic feature vector at the current time and its vicinity.
    • 在不仅在当时的声学特征以及当前时间附近的声学特征的上下文中估计电话的概率的方法和装置,以及其用于减少搜索 - 语音识别系统中的空间。 该方法构造并使用决策树,其中决策树的预测变量是当前时间和当前时间附近的矢量量化的声学特征向量。 该过程从在根节点的训练数据中的所有(预测器,类)事件的枚举开始,并且根据该节点处的最多信息拆分在节点处依次划分数据。 迭代算法用于设计二进制分区。 树完成后,预测类的概率分布存储在其所有终端叶上。 基于对当前时间及其附近的向量量化声学特征向量的二进制问题的答案,在解码过程中使用决策树通过跟踪到其叶子之一的路径。
    • 2. 发明授权
    • Speaker adaptation system and method based on class-specific
pre-clustering training speakers
    • 基于类特定的前聚类训练讲话者的演讲人适应系统和方法
    • US06073096A
    • 2000-06-06
    • US18350
    • 1998-02-04
    • Yuqing GaoMukund PadmanabhanMichael Alan Picheny
    • Yuqing GaoMukund PadmanabhanMichael Alan Picheny
    • G10L15/07G10L15/06
    • G10L15/07
    • A method of speech recognition, in accordance with the present invention includes the steps of grouping acoustics to form classes based on acoustic features, clustering training speakers by the classes to provide class-specific cluster systems, selecting from the cluster systems, a subset of cluster systems closest to adaptation data from a test speaker, transforming the subset of cluster systems to bring the subset of cluster systems closer to the test speaker based on the adaptation data to form adapted cluster systems and combining the adapted cluster systems to create a speaker adapted system for decoding speech from the test speaker. System and methods for building speech recognition systems as well as adapting speaker systems for class-specific speaker clusters are included.
    • 根据本发明的语音识别方法包括以下步骤:基于声学特征对声学进行分组以形成类别,由类别聚类训练讲话者以提供特定类别的集群系统,从集群系统中选择集群的子集 最接近来自测试说话者的自适应数据的系统,基于适配数据来改变集群系统的子集以使集群系统的子集更靠近测试说话者,以形成适应的集群系统,并组合适应的集群系统以创建一个说话者适配系统 用于解码来自测试扬声器的语音。 包括构建语音识别系统的系统和方法以及适用于类特定扬声器群的扬声器系统。
    • 3. 发明授权
    • Hierarchical labeler in a speech recognition system
    • 语音识别系统中的分层标签器
    • US6023673A
    • 2000-02-08
    • US869061
    • 1997-06-04
    • Raimo BakisDavid NahamooMichael Alan PichenyJan Sedivy
    • Raimo BakisDavid NahamooMichael Alan PichenyJan Sedivy
    • G10L5/06G10L9/00
    • G10L15/083
    • A speech coding apparatus and method uses a hierarchy of prototype sets to code an utterance while consuming fewer computing resources. The value of at least one feature of an utterance is measured during each of a series of successive time intervals to produce a series of feature vector signals representing the feature values. A plurality of level subsets of prototype vector signals is computed, wherein each prototype vector signal in a higher level subset is associated with at least one prototype vector signal in a lower level subset. Each level subset contains a plurality of prototype vector signals, with lower level subsets containing more prototypes than higher level subsets. The closeness of the feature value of the first feature vector signal is compared to the parameter values of prototype vector signals in the first level subset of prototype vector signals to obtain a ranked list of prototype match scores for the first feature vector signal and each prototype vector signal in the first level subset. The closeness of the feature value of the first feature vector signal is compared to the parameter values of each prototype vector signal in a second (lower) level subset that is associated with the highest ranking prototype vectors in the first level subset, to obtain a second ranked list of prototype match scores. The identification value of the prototype vector signal in the second ranked list having the best prototype match score is output as a coded utterance representation signal of the first feature vector signal.
    • 语音编码装置和方法使用原型集的层次来编码话语,同时消耗更少的计算资源。 在一系列连续时间间隔的每一个期间测量话音的至少一个特征的值,以产生表示特征值的一系列特征向量信号。 计算原型矢量信号的多个级别子集,其中较高级子集中的每个原型矢量信号与较低级子集中的至少一个原型矢量信号相关联。 每个级别子集包含多个原型矢量信号,其中较低级子集包含比较高级子集更多的原型。 将第一特征向量信号的特征值的接近度与原型矢量信号的第一级子集中的原型矢量信号的参数值进行比较,以获得第一特征向量信号和每个原型矢量的原型匹配分数的排序列表 信号在第一级子集。 将第一特征向量信号的特征值的接近度与与第一级子集中的最高排序原型向量相关联的第二(较低)级子集中的每个原型矢量信号的参数值进行比较,以获得第二 排名榜的原型比赛得分。 将具有最佳原型匹配分数的第二等级列表中的原型矢量信号的识别值输出为第一特征向量信号的编码话音表示信号。
    • 7. 发明授权
    • Techniques for enhancing the performance of concatenative speech synthesis
    • 提高连接语音合成性能的技术
    • US08145491B2
    • 2012-03-27
    • US10208453
    • 2002-07-30
    • Wael Mohamed HamzaMichael Alan Picheny
    • Wael Mohamed HamzaMichael Alan Picheny
    • G10L13/06
    • G10L13/07
    • When pitch of a speech segment is being modified from a current pitch to a requested pitch, and the difference between these is relatively large, a pitch modification algorithm is used to modify the pitch of the speech segment. When the difference between current and requested pitches is relatively small, the pitch of the speech segment is not modified. After one or the other speech modification techniques are used, then the resultant modified speech segment is overlapped and added to previously modified speech segments. A modification ratio is determined in order to quantify the difference between the current and requested pitches for a speech segment. The modification ratio is a ratio between the requested and current pitches. Low and high ratio thresholds are used to determine when pitch is being modified to a predetermined high degree, and whether pitch of the speech segment will or will not be modified.
    • 当语音片段的节距从当前音调修改为所请求的节距,并且它们之间的差异相对较大时,使用音调修改算法来修改语音片段的音高。 当电流和请求间距之差相对较小时,语音段的音调不被修改。 在使用一种或另一种语音修改技术之后,将所得到的修改语音段重叠并添加到先前修改的语音段。 确定修正率以量化语音段的当前和所请求的间距之间的差异。 修正比是要求和当前间距之间的比率。 使用低和高比率阈值来确定音调何时被修改到预定的高度,以及语音片段的音调是否将被修改。
    • 8. 发明授权
    • Automatic segmentation of continuous text using statistical approaches
    • 使用统计方法自动分割连续文本
    • US5806021A
    • 1998-09-08
    • US700823
    • 1996-09-04
    • Chengjun Julian ChenFu-Hua LiuMichael Alan Picheny
    • Chengjun Julian ChenFu-Hua LiuMichael Alan Picheny
    • G06F17/27G06F17/20
    • G06F17/277
    • An automatic segmenter for continuous text segments such text in a rapid, consistent and semantically accurate manner. Two statistical methods for segmentation of continuous text are used. The first method, called "forward-backward matching", is easy and fast but can produce occasional errors in long phrases. The second method, called "statistical stack search segmenter", utilizes statistical language models to generate more accurate segmentation output at an expense of two times more execution time than the "forward-backward matching" method. In some applications where speed is a major concern, "forward-backward matching" can be used, while in other applications where highly accurate output is desired, "statistical stack search segmenter" is ideal.
    • 用于以快速,一致和语义准确的方式连续文本段的自动分段器。 使用两种连续文本分割的统计方法。 第一种称为“前向 - 后向匹配”的方法是简单快捷的,但可能会产生长时间的误差。 称为“统计堆栈搜索分段器”的第二种方法利用统计语言模型以比“前向 - 后向匹配”方法多两倍的执行时间来生成更精确的分段输出。 在速度是主要关注的一些应用中,可以使用“前向后匹配”,而在需要高精度输出的其他应用中,“统计栈搜索分段器”是理想的。