会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Radiation emitting semiconductor device and method of manufacturing such a device
    • US07232734B2
    • 2007-06-19
    • US10534385
    • 2003-10-31
    • Pierre Hermanus WoerleeGert Wim 'T HooftJisk Holleman
    • Pierre Hermanus WoerleeGert Wim 'T HooftJisk Holleman
    • H01L21/331
    • H01L33/34H01L27/15
    • Radiation-emitting semiconductor device and method of manufacturing such a device. The invention relates to a radiation-emitting semiconductor device (10) comprising a silicon-containing semiconductor body (1) and a substrate (2), which semiconductor body (1) comprises a lateral semiconductor diode positioned on an insulating layer (7) which separates the diode from the substrate (2). The lateral semiconductor diode comprises a first semiconductor region (3) of a first conductivity type and with a first doping concentration, a second semiconductor region (4) of the first or a second conductivity type opposite to the first conductivity type and with a second doping concentration which is lower than the first doping concentration, and a third semiconductor region (5) of the second conductivity type and with a third doping concentration which is higher than the second doping concentration, the first and the third region (3, 5) each being provided with a connection region (6, 8), and, during operation, radiation (S) being generated in the second region (4) due to recombination of charge carriers injected therein from the first and the third region (3, 5). According to the invention, the second semiconductor region (4) comprises a central part (4A) which is surrounded by a further part (4B) the bandgap of which is larger than the bandgap of the central part (4A). In this way, the radiation yield is increased in an indirect semiconductor material such as silicon in the central part (4A) as translation of the relatively long-living charge carriers towards a non-radiative recombination center is limited because of the barriers in the valence and conduction band in the further part (4B). Preferably, the bandgap in the further part (4B) is made larger in that the thickness of said part (4B) is so small that quantum size effects occur therein, while the central part (4A) has a thickness which is so large that such effects do not occur or substantially do not occur.
    • 2. 发明申请
    • Radiation emitting semiconductor device and method of manufacturing such a device
    • US20060043381A1
    • 2006-03-02
    • US10534385
    • 2003-10-31
    • Pierre WoerleeGert 'T HooftJisk Holleman
    • Pierre WoerleeGert 'T HooftJisk Holleman
    • H01L33/00H01L21/00
    • H01L33/34H01L27/15
    • Radiation-emitting semiconductor device and method of manufacturing such a device. The invention relates to a radiation-emitting semiconductor device (10) comprising a silicon-containing semiconductor body (1) and a substrate (2), which semiconductor body (1) comprises a lateral semiconductor diode positioned on an insulating layer (7) which separates the diode from the substrate (2). The lateral semiconductor diode comprises a first semiconductor region (3) of a first conductivity type and with a first doping concentration, a second semiconductor region (4) of the first or a second conductivity type opposite to the first conductivity type and with a second doping concentration which is lower than the first doping concentration, and a third semiconductor region (5) of the second conductivity type and with a third doping concentration which is higher than the second doping concentration, the first and the third region (3, 5) each being provided with a connection region (6, 8), and, during operation, radiation (S) being generated in the second region (4) due to recombination of charge carriers injected therein from the first and the third region (3, 5). According to the invention, the second semiconductor region (4) comprises a central part (4A) which is surrounded by a further part (4B) the bandgap of which is larger than the bandgap of the central part (4A). In this way, the radiation yield is increased in an indirect semiconductor material such as silicon in the central part (4A) as translation of the relatively long-living charge carriers towards a non-radiative recombination center is limited because of the barriers in the valence and conduction band in the further part (4B). Preferably, the bandgap in the further part (4B) is made larger in that the thickness of said part (4B) is so small that quantum size effects occur therein, while the central part (4A) has a thickness which is so large that such effects do not occur or substantially do not occur.