会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • STACKED MULTIPLE ELECTRONIC COMPONENT INTERCONNECT STRUCTURE
    • 堆叠多个电子元件互连结构
    • US20090119902A1
    • 2009-05-14
    • US12175071
    • 2008-07-17
    • Mark D. PlucinskiArvind K. Sinha
    • Mark D. PlucinskiArvind K. Sinha
    • H01S4/00
    • H01R13/22Y10T29/49002
    • Forming a stacked multiple electronic component interconnect structure includes mounting a first double sided land grid to a first surface of a flexible cable and attaching a second double sided land grid array to a second surface of the flexible cable. A first electronic component is attached to a first surface of the first double sided land grid array and a second electronic component is secured to a second surface of the second double sided land grid array to form a stacked multiple electronic component interconnect structure. The stacked multiple electronic component interconnect structure is attached to a circuit board having an electronic component interface cavity. The second electronic component is mounted in the electronic component interface cavity. Finally, the method includes attaching a force member to apply a compressive force to the stacked multiple electronic component interconnect structure to maintain electrical contact between the first and second electronic components.
    • 形成堆叠的多个电子部件互连结构包括将第一双面接地栅格安装到柔性电缆的第一表面并将第二双面焊盘栅格阵列附接到柔性电缆的第二表面。 第一电子部件附接到第一双面焊盘栅格阵列的第一表面,并且第二电子部件固定到第二双面焊盘栅极阵列的第二表面以形成堆叠的多个电子部件互连结构。 堆叠的多个电子部件互连结构附接到具有电子部件接口腔的电路板。 第二电子部件安装在电子部件接口腔中。 最后,该方法包括附接力构件以向堆叠的多个电子元件互连结构施加压缩力以维持第一和第二电子部件之间的电接触。
    • 7. 发明申请
    • IMPLEMENTING ENHANCED THERMAL CONDUCTIVITY IN STACKED MODULES
    • 在堆叠模块中实现增强的热导率
    • US20130032935A1
    • 2013-02-07
    • US13198895
    • 2011-08-05
    • Kevin M. O'ConnellArvind K. SinhaKory W. Weckman
    • Kevin M. O'ConnellArvind K. SinhaKory W. Weckman
    • H01L23/04H01L21/58
    • H01L23/10H01L23/36H01L25/0657H01L2225/06589H01L2924/0002H01L2924/00
    • A method and structures are provided for implementing enhanced thermal conductivity between a lid and heat sink for stacked modules. A chip lid and lateral heat distributor includes cooperating features for implementing enhanced thermal conductivity. The chip lid includes a groove along an inner side wall including a flat wall surface and a curved edge surface. The lateral heat distributor includes a mating edge portion received within the groove. The mating edge portion includes a bent arm for engaging the curved edge surface groove and a flat portion. The lateral heat distributor is assembled into place with the chip lid, the mating edge portion of the lateral heat distributor bends and snaps into the groove of the chip lid. The bent arm portion presses on the curved surface of the groove, and provides an upward force to push the flat portion against the flat wall surface of the groove.
    • 提供了一种方法和结构,用于在堆叠模块的盖和散热器之间实现增强的导热性。 芯片盖和侧向热分布器包括用于实现增强导热性的协同特征。 芯片盖包括沿着包括平坦壁表面和弯曲边缘表面的内侧壁的凹槽。 横向热分布器包括容纳在槽内的配合边缘部分。 配合边缘部分包括用于接合弯曲边缘表面槽的弯曲臂和平坦部分。 横向热分布器与芯片盖组装就位,侧向热分布器的配合边缘部分弯曲并卡入芯片盖的凹槽中。 弯曲的臂部分压在槽的弯曲表面上,并提供向上的力以将平坦部分推靠在槽的平坦壁表面上。
    • 8. 发明授权
    • Implementing enhanced thermal conductivity in stacked modules
    • 在堆叠模块中实现增强的导热性
    • US08779585B2
    • 2014-07-15
    • US13198895
    • 2011-08-05
    • Kevin M. O'ConnellArvind K. SinhaKory W. Weckman, II
    • Kevin M. O'ConnellArvind K. SinhaKory W. Weckman, II
    • H01L23/12H01L21/44
    • H01L23/10H01L23/36H01L25/0657H01L2225/06589H01L2924/0002H01L2924/00
    • A method and structures are provided for implementing enhanced thermal conductivity between a lid and heat sink for stacked modules. A chip lid and lateral heat distributor includes cooperating features for implementing enhanced thermal conductivity. The chip lid includes a groove along an inner side wall including a flat wall surface and a curved edge surface. The lateral heat distributor includes a mating edge portion received within the groove. The mating edge portion includes a bent arm for engaging the curved edge surface groove and a flat portion. The lateral heat distributor is assembled into place with the chip lid, the mating edge portion of the lateral heat distributor bends and snaps into the groove of the chip lid. The bent arm portion presses on the curved surface of the groove, and provides an upward force to push the flat portion against the flat wall surface of the groove.
    • 提供了一种方法和结构,用于在堆叠模块的盖和散热器之间实现增强的导热性。 芯片盖和侧向热分布器包括用于实现增强导热性的协同特征。 芯片盖包括沿着包括平坦壁表面和弯曲边缘表面的内侧壁的凹槽。 横向热分布器包括容纳在槽内的配合边缘部分。 配合边缘部分包括用于接合弯曲边缘表面槽的弯曲臂和平坦部分。 横向热分布器与芯片盖组装就位,侧向热分布器的配合边缘部分弯曲并卡入芯片盖的凹槽中。 弯曲的臂部分压在槽的弯曲表面上,并提供向上的力以将平坦部分推靠在槽的平坦壁表面上。
    • 9. 发明授权
    • Providing thermal compensation for topographic measurement at an elevated temperature using a non-contact vibration transducer
    • 使用非接触式振动传感器,在高温下提供对地形测量的热补偿
    • US08705050B2
    • 2014-04-22
    • US12898783
    • 2010-10-06
    • Arvind K. Sinha
    • Arvind K. Sinha
    • G01B11/30
    • G01B11/24
    • A mechanism for providing thermal compensation when measuring surface topography at an elevated temperature using a non-contact vibration transducer, such as a laser Doppler vibrometer (LDV). Thermal compensation is provided to a detector output signal to correct for thermal diffraction of a reflected portion of a beam of radiant energy directed at a surface of a test object. The thermal compensation is based on a calculated deviation between the detector output signal r2 at an elevated temperature and the detector output signal r1 at approximately room temperature. In one embodiment, the thermal compensation mechanism calculates a stationary signal r3(t) which represents the detector output signal without noise and corrected for thermal diffraction at the elevated temperature according to the following equation: r 3 ⁡ ( t ) = lim T → ∞ ⁢ 1 / T ⁢ ∫ - t / 2 + t / 2 ⁢ r 2 * ⁡ ( t ) * r 2 * ⁡ ( t + Δ ⁢ ⁢ t ) ⁢ ⁢ ⅆ t , wherein T represents the total number of spectrums measured at the elevated temperature at multiple times upon which the compensation is based, and wherein r2*=r2−r2(baseline).
    • 使用诸如激光多普勒振动计(LDV)的非接触式振动传感器在高温测量表面形貌时提供热补偿的机构。 将热补偿提供给检测器输出信号,以校正指向测试对象表面的辐射能束的反射部分的热衍射。 热补偿基于在升高的温度下的检测器输出信号r2与大约室温下的检测器输出信号r1之间的计算偏差。 在一个实施例中,热补偿机构根据以下等式计算表示无噪声的检测器输出信号的稳定信号r3(t),并根据以下等式对升高的温度下的热衍射进行校正:r 3⁡(t)= lim T→∞ 1 /T∫-t / 2 + t / 2r 2 *⁡(t)* r 2 *⁡(t +&Dgr;⁢t)⁢ⅆt,其中T表示测量的光谱总数 在补偿所基于的多次的高温下,其中r2 * = r2-r2(基线)。