会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Robust preprocessing signal equalization system and method for normalizing to a target environment
    • 强大的预处理信号均衡系统和方法,用于归一化到目标环境
    • US06411927B1
    • 2002-06-25
    • US09148401
    • 1998-09-04
    • Philippe MorinPhilippe GelinJean-Claude Junqua
    • Philippe MorinPhilippe GelinJean-Claude Junqua
    • G10L1914
    • G10L15/065G10L15/20
    • The audio source is spectrally shaped by filtering in the time domain to approximate or emulate a standardized or target microphone input channel. The background level is adjusted by adding noise to the time domain signal prior to the onset of speech to set a predetermined background noise level based on a predetermined target. The audio source is then monitored in real time and the signal-to-noise ratio is adjusted by adding noise to the time domain signal, in real time, to maintain a signal-to-noise ratio based on a predetermined target value. The normalized audio signal may be applied to both training speech and test speech. The resultant normalization minimizes the mismatch between training and testing and also improves other speech processing functions, such as speech endpoint detection.
    • 音频源通过在时域中过滤来近似或模拟标准化或目标麦克风输入通道进行频谱成形。 通过在语音开始之前对时域信号增加噪声来调整背景电平,以基于预定目标设定预定的背景噪声电平。 然后,实时监视音频源,实时地通过对时域信号增加噪声来调整信噪比,以基于预定目标值维持信噪比。 归一化音频信号可以应用于训练语音和测试语音两者。 最终归一化使训练和测试之间的不匹配最小化,并且还改善了其他语音处理功能,例如语音端点检测。
    • 2. 发明授权
    • Speech detection using stochastic confidence measures on the frequency spectrum
    • 使用随机置信度测量对频谱进行语音检测
    • US06327564B1
    • 2001-12-04
    • US09263292
    • 1999-03-05
    • Philippe GelinJean-Claude Junqua
    • Philippe GelinJean-Claude Junqua
    • G01L1520
    • G10L25/78
    • An accurate and reliable method is provided for detecting speech from an input speech signal. A probabilistic approach is used to classify each frame of the speech signal as speech or non-speech. The speech detection method is based on a frequency spectrum extracted from each frame, such that the value for each frequency band is considered to be a random variable and each frame is considered to be an occurrence of these random variables. Using the frequency spectrums from a non-speech part of the speech signal, a known set of random variables is constructed. Next, each unknown frame is evaluated as to whether or not it belongs to this known set of random variables. To do so, a unique random variable (preferably a chi-square value) is formed from the set of random variables associated with the unknown frame. The unique variable is normalized with respect the known set of random variables and then classified as either speech or non-speech using the “Test of Hypothesis”. Thus, each frame that belongs to the known set of random variables is classified as non-speech and each frame that does not belong to the known set of random variables is classified as speech.
    • 提供了用于从输入语音信号检测语音的准确可靠的方法。 使用概率方法将语音信号的每个帧分类为语音或非语音。 语音检测方法基于从每帧提取的频谱,使得每个频带的值被认为是随机变量,并且每个帧被认为是这些随机变量的出现。 使用来自语音信号的非语音部分的频谱,构建了一组已知的随机变量。 接下来,评估每个未知帧是否属于该已知的随机变量集合。 为此,从与未知帧相关联的随机变量集合形成唯一的随机变量(最好是卡方值)。 唯一变量相对于已知的随机变量集进行归一化,然后使用“假设检验”将其分类为语音或非语音。 因此,属于已知的一组随机变量的每个帧被分类为非语音,并且不属于已知的一组随机变量的每个帧被分类为语音。
    • 3. 发明授权
    • Supervised adaptation using corrective N-best decoding
    • 使用校正N最佳解码的监督适应
    • US06272462B1
    • 2001-08-07
    • US09257893
    • 1999-02-25
    • Patrick NguyenPhilippe GelinJean-Claude Junqua
    • Patrick NguyenPhilippe GelinJean-Claude Junqua
    • G10L1506
    • G10L15/075G10L2015/0635
    • Supervised adaptation speech is supplied to the recognizer and the recognizer generates the N-best transcriptions of the adaptation speech. These transcriptions include the one transcription known to be correct, based on a priori knowledge of the adaptation speech, and the remaining transcriptions known to be incorrect. The system applies weights to each transcription: a positive weight to the correct transcription and negative weights to the incorrect transcriptions. These weights have the effect of moving the incorrect transcriptions away from the correct one, rendering the recognition system more discriminative for the new speaker's speaking characteristics. Weights applied to the incorrect solutions are based on the respective likelihood scores generated by the recognizer. The sum of all weights (positive and negative) are a positive number. This ensures that the system will converge.
    • 受监督的适应语音被提供给识别器,并且识别器生成适应语音的N个最佳的转录。 这些转录包括基于适应言语的先验知识的已知正确的一个转录,以及已知不正确的剩余转录。 该系统对每个转录应用权重:对正确转录的正负重和不正确转录的负权重。 这些权重具有将错误的记录从正确的转录中移开的效果,使识别系统对于新的说话者的说话特征更具歧视性。 应用于不正确解的权重是基于识别器产生的各自的可能性得分。 所有权重(正和负)的和是正数。 这样可以确保系统收敛。