会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明申请
    • Identifying optimal multi-scale patterns in time-series streams
    • 确定时间序列流中的最优多尺度模式
    • US20070294247A1
    • 2007-12-20
    • US11471002
    • 2006-06-20
    • Spyridon PapadimitriouPhilip S. Yu
    • Spyridon PapadimitriouPhilip S. Yu
    • G06F17/30
    • G06K9/00496
    • A method, system, and computer readable medium for identifying local patterns in at least one time series data stream are disclosed. The method comprises generating multiple ordered levels of hierarchal approximation functions. The multiple ordered levels are generated directly from at least one given time series data stream including at least one set of time series data. The hierarchical approximation functions for each level of the multiple levels is based upon creating a set of approximating functions. The hierarchical approximation functions are also based upon selecting a current window with a current window length from a set of varying window lengths. The current window is selected for a current level of the multiple levels.
    • 公开了一种用于识别至少一个时间序列数据流中的局部模式的方法,系统和计算机可读介质。 该方法包括生成层次近似函数的多个有序级别。 多个有序级别直接从包括至少一组时间序列数据的至少一个给定时间序列数据流生成。 多层次的每个级别的层次近似函数基于创建一组近似函数。 层次近似函数还基于从一组变化的窗口长度中选择具有当前窗口长度的当前窗口。 为当前级别选择当前窗口。
    • 7. 发明授权
    • Identifying optimal multi-scale patterns in time-series streams
    • 确定时间序列流中的最优多尺度模式
    • US07945570B2
    • 2011-05-17
    • US12551033
    • 2009-08-31
    • Spyridon PapadimitriouPhilip S. Yu
    • Spyridon PapadimitriouPhilip S. Yu
    • G06F17/30
    • G06K9/00496
    • A computer-implemented method, system, and a computer readable article of manufacture identify local patterns in at least one time series data stream. A data stream is received that comprises at least one set of time series data. The at least one set of time series data is formed into a set of multiple ordered levels of time series data. Multiple ordered levels of hierarchical approximation functions are generated directly from the multiple ordered levels of time series data. A set of approximating functions are created for each level. A current window with a current window length is selected from a set of varying window lengths. The set of approximating functions created at one level in the multiple ordered levels is passed to a subsequent level as a set of time series data. The multiple ordered levels of hierarchical approximation functions are stored into memory after being generated.
    • 计算机实现的方法,系统和计算机可读制造商标识至少一个时间序列数据流中的局部模式。 接收包括至少一组时间序列数据的数据流。 至少一组时间序列数据被形成为一组时间序列数据的多个有序级别。 分层近似函数的多个有序级别直接从多个有序级别的时间序列数据生成。 为每个级别创建一组近似函数。 从一组变化的窗口长度中选择具有当前窗口长度的当前窗口。 在多个有序等级中在一个级别创建的一组近似函数作为一组时间序列数据传递到后续级别。 分层近似函数的多个有序等级在生成后被存储到存储器中。
    • 8. 发明授权
    • Methods involving computing correlation anomaly scores
    • 涉及计算相关异常评分的方法
    • US07483934B1
    • 2009-01-27
    • US11959073
    • 2007-12-18
    • Tsuyoshi IdeSpyridon Papadimitriou
    • Tsuyoshi IdeSpyridon Papadimitriou
    • G06F17/15
    • G06K9/00979G06K9/6224G06K9/6284
    • An exemplary method for computing correlation anomaly scores, including, defining a first similarity matrix for a target run of data, the target run of data includes an N number of sensors, defining a second similarity matrix for a reference run of data, the target run of data includes the N number of sensors, developing a k-neighborhood graph Ni of the i-th node for the target run of data, wherein the k-neighborhood graph of the i-th node is defined as a graph comprising the i-th node and its k-nearest neighbors (NN), developing a k-neighborhood graph Ni of the i-th node for the reference run of data, defining a probability distribution p(j|i), wherein p(j|i) is the probability that the j-th node becomes one of the k-NN of the i-th node, coupling the probability between the i-th node and the neighbors of the i-th node, determining an anomaly score of the i-th node, and determining whether the target run of data has changed from the reference run of data responsive to determining the anomaly score of the i-th node.
    • 一种用于计算相关异常评分的示例性方法,包括定义目标数据运行的第一相似度矩阵,目标数据运行包括N个传感器,为参考数据运行定义第二相似矩阵,目标运行 的数据包括N个传感器,为目标运行数据开发第i个节点的k邻域图Ni,其中第i个节点的k邻域图被定义为包括i- (NN),为参考运行数据开发第i个节点的k邻域图,其定义概率分布p(j | i) 其中p(j | i)是第j个节点成为第i个节点的k-NN之一的概率,将第i个节点与第i个节点的邻居之间的概率相耦合, 确定第i个节点的异常分数,并确定数据的目标运行是否已经从参考运行的数据响应t o确定第i个节点的异常得分。
    • 9. 发明申请
    • CONTENT-BASED AND TIME-EVOLVING SOCIAL NETWORK ANALYSIS
    • 基于内容和时间演化的社会网络分析
    • US20110055379A1
    • 2011-03-03
    • US12552812
    • 2009-09-02
    • Ching-Yung LinSpyridon PapadimitriouJimeng SunKun-Lung Wu
    • Ching-Yung LinSpyridon PapadimitriouJimeng SunKun-Lung Wu
    • G06F17/10G06F15/173
    • G06K9/00677G06K9/6224G06Q30/02
    • System and method for modeling a content-based network. The method includes finding single mode clusters from among network (sender and recipient) and content dimensions represented as a tensor data structure. The method allows for derivation of useful cross-mode clusters (interpretable patterns) that reveal key relationships among user communities and keyword concepts for presentation to users in a meaningful and intuitive way. Additionally, the derivation of useful cross-mode clusters is facilitated by constructing a reduced low-dimensional representation of the content-based network. Moreover, the invention may be enhanced for modeling and analyzing the time evolution of social communication networks and the content related to such networks. To this end, a set of non-overlapping or possibly overlapping time-based windows is constructed and the analysis performed at each successive time interval.
    • 用于建模基于内容的网络的系统和方法。 该方法包括从网络(发送者和接收者)和表示为张量数据结构的内容维度中找到单一模式集群。 该方法允许推导出有用的交叉模式集群(可解释模式),其显示用户社区之间的关键关系和关键字概念,以有意义和直观的方式呈现给用户。 另外,通过构建基于内容的网络的减少的低维表示来促进有用的交叉模式集群的推导。 此外,本发明可以被增强用于建模和分析社交通信网络的时间演进和与这样的网络有关的内容。 为此,构建一组不重叠或可能重叠的基于时间的窗口,并且在每个连续的时间间隔执行分析。