会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Graphics image rendering with radiance self-transfer for low-frequency lighting environments
    • 用于低频照明环境的图形图像渲染与辐射自转传输
    • US07262770B2
    • 2007-08-28
    • US10389553
    • 2003-03-14
    • Peter-Pike J. SloanJohn M. SnyderJan Kautz
    • Peter-Pike J. SloanJohn M. SnyderJan Kautz
    • G06T15/50
    • G06T15/506
    • Real-time image rendering of diffuse and glossy objects in low-frequency lighting environments captures soft shadows, interreflections, and caustics. As a preprocess, a global transport simulator creates functions over the object's surface representing transfer of arbitrary, low-frequency source lighting into exiting radiance, but including global effects like shadowing and interreflection from the object onto itself. At run-time, these transfer functions are applied to the actual source lighting. Dynamic, local lighting is handled by sampling close to the object at every frame; the object can also be rigidly rotated with respect to the lighting and vice versa. Lighting and transfer functions are represented using low-order spherical harmonics. Functions for radiance transfer from a dynamic lighting environment through a preprocessed object to neighboring points in space further allow cast soft shadows and caustics from rigidly moving casters onto arbitrary, dynamic receivers.
    • 低频照明环境中漫反射和光面物体的实时图像渲染可以捕获柔和的阴影,反射和焦散。 作为预处理,全局传输模拟器在对象的表面上创建表示将任意低频源照明传输到退出辐射的功能,但包括全局效果,如从对象到其自身的遮蔽和反射。 在运行时,这些传递函数被应用于实际的源照明。 动态的,局部照明是通过在每个框架附近的物体进行采样来处理的; 物体也可以相对于照明而刚性地旋转,反之亦然。 照明和传递函数用低阶球面谐波表示。 从动态照明环境通过预处理对象到空间中的相邻点的辐射传递函数进一步允许将软阴影和焦散从刚性移动的脚轮投射到任意的动态接收器上。
    • 2. 发明授权
    • Graphics image rendering with radiance self-transfer for low-frequency lighting environments
    • 用于低频照明环境的图形图像渲染与辐射自转传输
    • US07609265B2
    • 2009-10-27
    • US11825918
    • 2007-07-09
    • Peter-Pike J. SloanJohn M. SnyderJan Kautz
    • Peter-Pike J. SloanJohn M. SnyderJan Kautz
    • G06T15/50G06T15/60
    • G06T15/506
    • Real-time image rendering of diffuse and glossy objects in low-frequency lighting environments captures soft shadows, interreflections, and caustics. As a preprocess, a global transport simulator creates functions over the object's surface representing transfer of arbitrary, low-frequency source lighting into exiting radiance, but including global effects like shadowing and interreflection from the object onto itself. At run-time, these transfer functions are applied to the actual source lighting. Dynamic, local lighting is handled by sampling close to the object at every frame; the object can also be rigidly rotated with respect to the lighting and vice versa. Lighting and transfer functions are represented using low-order spherical harmonics. Functions for radiance transfer from a dynamic lighting environment through a preprocessed object to neighboring points in space further allow cast soft shadows and caustics from rigidly moving casters onto arbitrary, dynamic receivers.
    • 低频照明环境中漫反射和光面物体的实时图像渲染可以捕获柔和的阴影,反射和焦散。 作为预处理,全局传输模拟器在对象的表面上创建表示将任意低频源照明传输到退出辐射的功能,但包括全局效果,如从对象到其自身的遮蔽和反射。 在运行时,这些传递函数被应用于实际的源照明。 动态的,局部照明是通过在每个框架附近的物体进行采样来处理的; 物体也可以相对于照明而刚性地旋转,反之亦然。 照明和传递函数用低阶球面谐波表示。 从动态照明环境通过预处理对象到空间中的相邻点的辐射传递函数进一步允许将软阴影和焦散从刚性移动的脚轮投射到任意的动态接收器上。
    • 4. 发明授权
    • Physical reproduction of reflectance fields
    • 反射场的物理再现
    • US09202310B2
    • 2015-12-01
    • US13608819
    • 2012-09-10
    • Bernd BickelMarc AlexaJan KautzWojciech MatusikFabrizio Pece
    • Bernd BickelMarc AlexaJan KautzWojciech MatusikFabrizio Pece
    • G06T17/00
    • G06T17/00B33Y50/00
    • A three-dimensional relief can be produced from one or more two-dimensional digital (2D) images. A height field is computed from the 2D images and illumination direction information. The height field comprises a multiplicity of geometric surface elements arrayed in a 2D field corresponding to the pixels of the one or more 2D images. Each geometric surface element corresponds to a pixel of each of the digital images and has at least one height parameter representing a displacement from a surface floor. Once the height field is computed, optimizations can be made to the height field including adding and adjusting albedo and glossy surface finishing. The height field can be used to fabricate relief elements in a material, such that each relief element corresponds in shape, position in the height field, and height above the surface floor, to one of the geometric surface elements in the height field.
    • 可以从一个或多个二维数字(2D)图像产生三维浮雕。 根据2D图像和照明方向信息计算高度场。 高度场包括排列在对应于一个或多个2D图像的像素的2D场中的多个几何表面元素。 每个几何表面元素对应于每个数字图像的像素,并且具有至少一个表示来自表层的位移的高度参数。 一旦计算了高度场,就可以对高度场进行优化,包括添加和调整反照率和光泽表面光洁度。 高度场可用于制造材料中的浮雕元件,使得每个浮雕元件在高度场中的形状,位置和表面地板上方的高度对应于高度场中的几何表面元件之一。
    • 5. 发明申请
    • PHYSICAL REPRODUCTION OF REFLECTANCE FIELDS
    • 反射场的物理再现
    • US20130016100A1
    • 2013-01-17
    • US13608819
    • 2012-09-10
    • Bernd BickelMarc AlexaJan KautzWojciech MatusikFabrizio Pece
    • Bernd BickelMarc AlexaJan KautzWojciech MatusikFabrizio Pece
    • G06T17/00
    • G06T17/00B33Y50/00
    • A three-dimensional relief can be produced from one or more two-dimensional digital (2D) images. A height field is computed from the 2D images and illumination direction information. The height field comprises a multiplicity of geometric surface elements arrayed in a 2D field corresponding to the pixels of the one or more 2D images. Each geometric surface element corresponds to a pixel of each of the digital images and has at least one height parameter representing a displacement from a surface floor. Once the height field is computed, optimizations can be made to the height field including adding and adjusting albedo and glossy surface finishing. The height field can be used to fabricate relief elements in a material, such that each relief element corresponds in shape, position in the height field, and height above the surface floor, to one of the geometric surface elements in the height field.
    • 可以从一个或多个二维数字(2D)图像产生三维浮雕。 根据2D图像和照明方向信息计算高度场。 高度场包括排列在对应于一个或多个2D图像的像素的2D场中的多个几何表面元素。 每个几何表面元素对应于每个数字图像的像素,并且具有至少一个表示来自表层的位移的高度参数。 一旦计算了高度场,就可以对高度场进行优化,包括添加和调整反照率和光泽表面光洁度。 高度场可用于制造材料中的浮雕元件,使得每个浮雕元件在高度场中的形状,位置和表面地板上方的高度对应于高度场中的几何表面元件之一。