会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Surface reconstruction and registration with a Helmholtz reciprocal image pair
    • 用Helmholtz倒数图像对进行表面重建和配准
    • US20050074162A1
    • 2005-04-07
    • US10678244
    • 2003-10-03
    • Peter TuJames MillerPaulo MendoncaJames Ross
    • Peter TuJames MillerPaulo MendoncaJames Ross
    • G01B11/24G01B11/245G06K9/00G06T1/00G06T7/00G06T7/60
    • G06T7/593G06T7/507G06T7/74G06T7/80
    • A method of image reconstruction comprising: obtaining a Helmholtz reciprocal pair of images of an object, the images comprising a first image and a corresponding reciprocal image; determining an imaging geometry associated with the obtaining; selecting a plurality of points in the first image and identifying corresponding candidate points in the corresponding reciprocal image; matching a selected point of the plurality of points and a candidate point of the corresponding candidate points. A method of image registration with an object comprising: obtaining a Helmholtz reciprocal pair of images of an object, the Helmholtz reciprocal pair of images comprising a first image and a corresponding reciprocal image; estimating a pose for the object; predicting an estimated image corresponding to the pose and one image of the reciprocal pair of images; comparing the estimated image with a corresponding actual image from the pair of images; and refining the estimating a pose based on the comparing.
    • 一种图像重建方法,包括:获得对象的亥姆霍兹倒数对图像,所述图像包括第一图像和相应的倒数图像; 确定与所述获取相关联的成像几何; 选择所述第一图像中的多个点并识别所述对应的倒数图像中的相应候选点; 匹配多个点中的选定点和相应候选点的候选点。 一种用对象进行图像配准的方法,包括:获得对象的亥姆霍兹倒数对图像,所述亥姆霍兹倒数对图像包括第一图像和对应的倒数图像; 估计物体的姿势; 预测对应于所述姿势的估计图像和所述倒数对图像的一个图像; 将估计图像与来自该对图像的对应实际图像进行比较; 并根据比较精化估计姿势。
    • 3. 发明授权
    • Systems and methods for emotive software usability
    • 用于情绪软件可用性的系统和方法
    • US08869115B2
    • 2014-10-21
    • US13452329
    • 2012-04-20
    • Kirk Lars BrunsChristopher John OlivierPiali DasPeter TuXiaoming Liu
    • Kirk Lars BrunsChristopher John OlivierPiali DasPeter TuXiaoming Liu
    • G06F9/44G06F3/01
    • G06F3/013G06F9/451G06F2203/011
    • Systems and methods are disclosed for emotive healthcare software usability. A method to improve software usability is described, the method comprising presenting a software application to a user. The method also including logging activities of the user with respect to the software application, wherein the logging includes recording the user using the software application, and wherein the activities include user action with respect to the software application and mouse location on a user interface displaying the software application. The method also including interpreting user emotion from the recording, and tracking an emotive index based on a combination of user emotion and user action with respect to the software application and mouse location. The method also including providing feedback based on the emotive index.
    • 公开了用于情绪保健软件可用性的系统和方法。 描述了一种提高软件可用性的方法,该方法包括向用户呈现软件应用程序。 该方法还包括用户相对于软件应用程序的记录活动,其中所述记录包括使用所述软件应用程序记录所述用户,并且其中所述活动包括关于所述软件应用的用户动作以及显示所述软件应用的用户界面上的鼠标位置 软件应用。 该方法还包括从记录中解释用户情感,以及基于用户情感和用户动作的组合相对于软件应用程序和鼠标位置来跟踪情绪指数。 该方法还包括基于情绪指数提供反馈。
    • 4. 发明申请
    • Method of combining images of multiple resolutions to produce an enhanced active appearance model
    • 组合多个分辨率图像以产生增强的活动外观模型的方法
    • US20070292049A1
    • 2007-12-20
    • US11650213
    • 2007-01-05
    • Xiaoming LiuFrederick WheelerPeter Tu
    • Xiaoming LiuFrederick WheelerPeter Tu
    • G06K9/32
    • G06K9/621G06K9/00281
    • A method of producing an enhanced Active Appearance Model (AAM) by combining images of multiple resolutions is described herein. The method generally includes processing a plurality of images each having image landmarks and each image having an original resolution level. The images are down-sampled into multiple scales of reduced resolution levels. The AAM is trained for each image at each reduced resolution level, thereby creating a multi-resolution AAM. An enhancement technique is then used to refine the image landmarks for training the AAM at the original resolution level. The landmarks for training the AAM at each level of reduced resolution is obtained by scaling the landmarks used at the original resolution level by a ratio in accordance with the multiple scales.
    • 本文描述了通过组合多个分辨率的图像来生成增强的活动外观模型(AAM)的方法。 该方法通常包括处理多个具有图像界标的图像,并且每个图像具有原始分辨率级别。 图像被下采样成分辨率降低的多个尺度。 在每个降低的分辨率级别对每个图像训练AAM,从而创建多分辨率AAM。 然后使用增强技术来改善用于以原始分辨率级别训练AAM的图像界标。 通过将原始分辨率级别使用的地标按照多个尺度的比例进行缩放,可以获得在每个降低分辨率级别下对AAM进行训练的地标。
    • 8. 发明申请
    • APPARATUS AND METHOD FOR PREDICTING SOLAR IRRADIANCE VARIATION
    • 用于预测太阳辐射变化的装置和方法
    • US20130152997A1
    • 2013-06-20
    • US13329450
    • 2011-12-19
    • Yi YaoPeter TuMing-Ching ChangLi GuanYan Tong
    • Yi YaoPeter TuMing-Ching ChangLi GuanYan Tong
    • G06K9/00H01L31/042
    • G01W1/10F24S50/00F24S2201/00H01L31/02021Y02E10/40Y02E10/50
    • An apparatus and method, as may be used for predicting solar irradiance variation, are provided. The apparatus may include a solar irradiance predictor processor (10) configured to process a sequence of images (e.g., sky images). The irradiance predictor processor may include a cloud classifier module (18) configured to classify respective pixels of an image of a cloud to indicate a solar irradiance-passing characteristic of at least a portion of the cloud. A cloud motion predictor (22) may be configured to predict motion of the cloud over a time horizon. An event predictor (24) may be configured to predict over the time horizon occurrence of a solar obscuration event. The prediction of the solar obscuration event may be based on the predicted motion of the cloud. The event predictor may include an irradiance variation prediction for the obscuration event based on the solar irradiance-passing characteristic of the cloud.
    • 提供了可用于预测太阳辐照度变化的装置和方法。 该装置可以包括被配置为处理图像序列(例如,天空图像)的太阳辐照度预测器处理器(10)。 辐照度预测器处理器可以包括云分类器模块(18),其被配置为对云的图像的各个像素进行分类,以指示云的至少一部分的太阳辐射通过特性。 云运动预测器(22)可以被配置为预测云在时间范围内的运动。 事件预测器(24)可以被配置为在太阳遮挡事件的时间范围内发生预测。 太阳遮蔽事件的预测可以基于云的预测运动。 事件预测器可以包括基于云的太阳辐射通过特性的遮蔽事件的辐照度变化预测。