会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Support Vector Machines in a relational database management system
    • 支持向量机在关系数据库管理系统中
    • US07565370B2
    • 2009-07-21
    • US10927024
    • 2004-08-27
    • Boriana L. MilenovaJoseph S. YarmusMarcos M. CamposMark A. McCracken
    • Boriana L. MilenovaJoseph S. YarmusMarcos M. CamposMark A. McCracken
    • G06F17/00
    • G06F17/30598Y10S707/99933Y10S707/99943
    • An implementation of SVM functionality integrated into a relational database management system (RDBMS) improves efficiency, time consumption, and data security, reduces the parameter tuning challenges presented to the inexperienced user, and reduces the computational costs of building SVM models. A database management system comprises data stored in the database management system and a processing unit comprising a client application programming interface operable to provide an interface to client software, a build unit operable to build a support vector machine model on at least a portion of the data stored in the database management system, and an apply unit operable to apply the support vector machine model using the data stored in the database management system. The database management system may be a relational database management system.
    • 集成到关系数据库管理系统(RDBMS)中的SVM功能的实现提高了效率,时间消耗和数据安全性,减少了对经验不足的用户提出的参数调优挑战,并降低了构建SVM模型的计算成本。 数据库管理系统包括存储在数据库管理系统中的数据和处理单元,该处理单元包括可操作以向客户端软件提供接口的客户端应用编程接口,可操作以在数据的至少一部分上构建支持向量机模型的构建单元 存储在数据库管理系统中的应用单元,以及可以使用存储在数据库管理系统中的数据应用支持向量机模型的应用单元。 数据库管理系统可以是关系数据库管理系统。
    • 5. 发明授权
    • Support vector machines processing system
    • 支持向量机处理系统
    • US07490071B2
    • 2009-02-10
    • US10927111
    • 2004-08-27
    • Boriana L. MilenovaJoseph S. YarmusMarcos M. CamposMark A. McCracken
    • Boriana L. MilenovaJoseph S. YarmusMarcos M. CamposMark A. McCracken
    • G06F17/00G06N5/00
    • G06F17/30595G06F2216/03G06K9/6253G06K9/6269
    • An implementation of SVM functionality improves efficiency, time consumption, and data security, reduces the parameter tuning challenges presented to the inexperienced user, and reduces the computational costs of building SVM models. A system for support vector machine processing comprises data stored in the system, a client application programming interface operable to provide an interface to client software, a build unit operable to build a support vector machine model on at least a portion of the data stored in the system, based on a plurality of model-building parameters, a parameter estimation unit operable to estimate values for at least some of the model-building parameters, and an apply unit operable to apply the support vector machine model using the data stored in the system.
    • SVM功能的实现提高了效率,时间消耗和数据安全性,减少了对经验不足的用户提出的参数调优挑战,并降低了构建SVM模型的计算成本。 用于支持向量机处理的系统包括存储在系统中的数据,可操作以向客户端软件提供接口的客户端应用程序编程接口,可构建单元,用于在存储在所述系统中的数据的至少一部分上构建支持向量机模型 系统,基于多个模型构建参数,参数估计单元,其可操作以估计至少一些模型建立参数的值;以及应用单元,可操作以使用存储在系统中的数据应用支持向量机模型 。
    • 6. 发明授权
    • Enhanced K-means clustering
    • 增强的K均值聚类
    • US07590642B2
    • 2009-09-15
    • US10424838
    • 2003-04-29
    • Marcos M. CamposBoriana L. MilenovaMark A. McCracken
    • Marcos M. CamposBoriana L. MilenovaMark A. McCracken
    • G06F17/30
    • G06F17/30601G06F2216/03G06K9/6223Y10S707/99932Y10S707/99942Y10S707/99943
    • A database management provides the capability to perform cluster analysis and provides improved performance in model building and data mining, good integration with the various databases throughout the enterprise, and flexible specification and adjustment of the models being built, but which provides data mining functionality that is accessible to users having limited data mining expertise and which provides reductions in development times and costs for data mining projects. The database management system for in-database clustering comprises a first data table and a second data table, each data table including a plurality of rows of data, means for building an enhanced K-means clustering model using the first data table, and means for applying the enhanced K-means clustering model using the second data table to generate apply output data.
    • 数据库管理提供执行集群分析的能力,并在模型构建和数据挖掘中提供改进的性能,与整个企业中的各种数据库的良好集成,以及正在构建的模型的灵活规范和调整,但提供了数据挖掘功能 数据挖掘专业知识有限的用户可以访问,并减少数据挖掘项目的开发时间和成本。 用于数据库内聚类的数据库管理系统包括第一数据表和第二数据表,每个数据表包括多行数据,用于使用第一数据表构建增强的K均值聚类模型的装置,以及用于 使用第二数据表应用增强的K均值聚类模型来生成应用输出数据。
    • 7. 发明授权
    • In-database clustering
    • 数据库内集群
    • US07174343B2
    • 2007-02-06
    • US10424761
    • 2003-04-29
    • Marcos M. CamposBoriana L. MilenovaMark A. McCracken
    • Marcos M. CamposBoriana L. MilenovaMark A. McCracken
    • G06F17/30G06F7/00
    • G06F17/30598G06K9/6223G06K9/6226Y10S707/99942Y10S707/99943
    • A system, method, and computer program product for in-database clustering provides the capability to perform cluster analysis and provides improved performance in model building and data mining, good integration with the various databases throughout the enterprise, and flexible specification and adjustment of the models being built, but which provides data mining functionality that is accessible to users having limited data mining expertise and which provides reductions in development times and costs for data mining projects. A database management system for in-database clustering, comprises a first data table and a second data table, each data table including a plurality of rows of data, means for building a clustering model using the first data table, and means for applying the clustering model using the second data table to generate apply output data.
    • 用于数据库内集群的系统,方法和计算机程序产品提供了执行集群分析的能力,并在模型构建和数据挖掘中提供了改进的性能,与整个企业中的各种数据库的良好集成,以及模型的灵活规范和调整 正在构建,但它提供数据挖掘功能,用户具有有限的数据挖掘专业知识,并减少数据挖掘项目的开发时间和成本。 一种用于数据库内聚类的数据库管理系统,包括第一数据表和第二数据表,每个数据表包括多行数据,用于使用第一数据表构建聚类模型的装置,以及用于应用聚类 模型使用第二个数据表生成应用输出数据。
    • 8. 发明授权
    • Orthogonal partitioning clustering
    • 正交分区聚类
    • US07174344B2
    • 2007-02-06
    • US10424852
    • 2003-04-29
    • Marcos M. CamposBoriana L. Milenova
    • Marcos M. CamposBoriana L. Milenova
    • G06F17/00
    • G06F17/30598G06K9/6223G06K9/6226Y10S707/99942Y10S707/99943
    • A database management system provides the capability to perform cluster analysis and provides improved performance in model building and data mining, good integration with the various databases throughout the enterprise, and flexible specification and adjustment of the models being built, but which provides data mining functionality that is accessible to users having limited data mining expertise and which provides reductions in development times and costs for data mining projects. The database management system for in-database clustering comprises a first data table and a second data table, each data table including a plurality of rows of data, means for building an Orthogonal Partitioning Clustering model using the first data table, and means for applying the Orthogonal Partitioning Clustering model using the second data table to generate apply output data.
    • 数据库管理系统提供执行集群分析的能力,并在模型构建和数据挖掘中提供改进的性能,与整个企业中的各种数据库的良好集成,以及正在构建的模型的灵活规范和调整,但提供数据挖掘功能 对于具有有限的数据挖掘专业知识的用户可以访问,并减少数据挖掘项目的开发时间和成本。 用于数据库内聚类的数据库管理系统包括第一数据表和第二数据表,每个数据表包括多行数据,用于使用第一数据表构建正交分区聚类模型的装置,以及用于应用 正交分区聚类模型使用第二个数据表生成应用输出数据。
    • 9. 发明授权
    • Rule generation model building
    • 规则生成模型构建
    • US07174336B2
    • 2007-02-06
    • US10424762
    • 2003-04-29
    • Marcos M. CamposBoriana L. Milenova
    • Marcos M. CamposBoriana L. Milenova
    • G06F7/00G06Q40/00
    • G06F17/30598G06F17/30601G06F2216/03G06K9/6218G06Q40/00
    • A database management system provides the capability to perform cluster analysis and provides improved performance in model building and data mining, good integration with the various databases throughout the enterprise, and flexible specification and adjustment of the models being built, but which provides data mining functionality that is accessible to users having limited data mining expertise and which provides reductions in development times and costs for data mining projects. The database management system for in-database clustering comprises a first data table and a second data table, each data table including a plurality of rows of data, means for building a clustering model using the first data table, means for building a rule-based model using the clustering model, and means for applying the rule-based model using the second data table to generate apply output data.
    • 数据库管理系统提供执行集群分析的能力,并在模型构建和数据挖掘中提供改进的性能,与整个企业中的各种数据库的良好集成,以及正在构建的模型的灵活规范和调整,但提供数据挖掘功能 对于具有有限的数据挖掘专业知识的用户可以访问,并减少数据挖掘项目的开发时间和成本。 用于数据库内聚类的数据库管理系统包括第一数据表和第二数据表,每个数据表包括多行数据,用于使用第一数据表构建聚类模型的装置,用于构建基于规则的 使用聚类模型的模型,以及使用第二数据表应用基于规则的模型以生成应用输出数据的装置。
    • 10. 发明授权
    • Data summarization
    • 数据汇总
    • US07747624B2
    • 2010-06-29
    • US10424850
    • 2003-04-29
    • Marcos M. CamposBoriana L. Milenova
    • Marcos M. CamposBoriana L. Milenova
    • G06F17/30
    • G06F17/30598G06F17/30601G06K9/6223G06K9/6226Y10S707/968
    • A database management system provides the capability to perform cluster analysis and provides improved performance in model building and data mining, good integration with the various databases throughout the enterprise, and flexible specification and adjustment of the models being built, but which provides data mining functionality that is accessible to users having limited data mining expertise and which provides reductions in development times and costs for data mining projects. A database management system for in-database clustering comprises a first data table and a second data table, each data table including a plurality of rows of data, means for building a clustering model using the first data table using a portion of the first data table, wherein the portion of the first data table is selected by partitioning, density summarization, or active sampling of the first data table, and means for applying the clustering model using the second data table to generate apply output data.
    • 数据库管理系统提供执行集群分析的能力,并在模型构建和数据挖掘中提供改进的性能,与整个企业中的各种数据库的良好集成,以及正在构建的模型的灵活规范和调整,但提供数据挖掘功能 对于具有有限的数据挖掘专业知识的用户可以访问,并减少数据挖掘项目的开发时间和成本。 用于数据库内聚类的数据库管理系统包括第一数据表和第二数据表,每个数据表包括多行数据,用于使用第一数据表的一部分使用第一数据表建立聚类模型的装置 其中,通过第一数据表的分区,密度聚合或主动采样来选择第一数据表的部分,以及使用第二数据表应用聚类模型以生成应用输出数据的装置。