会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Scalable traffic classifier and classifier training system
    • 可扩展流量分类器和分类器训练系统
    • US08311956B2
    • 2012-11-13
    • US12539430
    • 2009-08-11
    • Subhabrata SenNicholas DuffieldPatrick HaffnerJeffrey ErmanYu Jin
    • Subhabrata SenNicholas DuffieldPatrick HaffnerJeffrey ErmanYu Jin
    • G06F15/18
    • G06N99/005
    • A traffic classifier has a plurality of binary classifiers, each associated with one of a plurality of calibrators. Each calibrator trained to translate an output score of the associated binary classifier into an estimated class probability value using a fitted logistic curve, each estimated class probability value indicating a probability that the packet flow on which the output score is based belongs to the traffic class associated with the binary classifier associated with the calibrator. The classifier training system configured to generate a training data based on network information gained using flow and packet sampling methods. In some embodiments, the classifier training system configured to generate reduced training data sets, one for each traffic class, reducing the training data related to traffic not associated with the traffic class.
    • 流量分类器具有多个二进制分类器,每个二进制分类器与多个校准器之一相关联。 每个校准器被训练成使用拟合的逻辑曲线将相关联的二进制分类器的输出得分转换成估计的类概率值,每个估计的类概率值指示输出得分所基于的分组流的概率属于相关联的流量类别 与校准器相关联的二进制分类器。 分类器训练系统被配置为基于使用流和分组采样方法获得的网络信息生成训练数据。 在一些实施例中,分类器训练系统被配置为生成减少的训练数据集,每个业务类别一个,减少与业务类别不相关的业务相关的训练数据。
    • 4. 发明授权
    • Scalable traffic classifier and classifier training system
    • 可扩展流量分类器和分类器训练系统
    • US09349102B2
    • 2016-05-24
    • US13620668
    • 2012-09-14
    • Subhabrata SenNicholas DuffieldPatrick HaffnerJeffrey ErmanYu Jin
    • Subhabrata SenNicholas DuffieldPatrick HaffnerJeffrey ErmanYu Jin
    • G06N99/00
    • G06N99/005
    • A traffic classifier has a plurality of binary classifiers, each associated with one of a plurality of calibrators. Each calibrator trained to translate an output score of the associated binary classifier into an estimated class probability value using a fitted logistic curve, each estimated class probability value indicating a probability that the packet flow on which the output score is based belongs to the traffic class associated with the binary classifier associated with the calibrator. The classifier training system configured to generate a training data based on network information gained using flow and packet sampling methods. In some embodiments, the classifier training system configured to generate reduced training data sets, one for each traffic class, reducing the training data related to traffic not associated with the traffic class.
    • 流量分类器具有多个二进制分类器,每个二进制分类器与多个校准器之一相关联。 每个校准器被训练成使用拟合的逻辑曲线将相关联的二进制分类器的输出得分转换成估计的类概率值,每个估计的类概率值指示输出得分所基于的分组流的概率属于相关联的流量类别 与校准器相关联的二进制分类器。 分类器训练系统被配置为基于使用流和分组采样方法获得的网络信息生成训练数据。 在一些实施例中,分类器训练系统被配置为生成减少的训练数据集,每个业务类别一个,减少与业务类别不相关的业务相关的训练数据。
    • 5. 发明申请
    • SCALABLE TRAFFIC CLASSIFIER AND CLASSIFIER TRAINING SYSTEM
    • 可扩展的交通分类器和分类器培训系统
    • US20110040706A1
    • 2011-02-17
    • US12539430
    • 2009-08-11
    • Subhabrata SenNicholas DuffieldPatrick HaffnerJeffrey ErmanYu Jin
    • Subhabrata SenNicholas DuffieldPatrick HaffnerJeffrey ErmanYu Jin
    • G06F15/18G06N5/02
    • G06N99/005
    • A traffic classifier has a plurality of binary classifiers, each associated with one of a plurality of calibrators. Each calibrator trained to translate an output score of the associated binary classifier into an estimated class probability value using a fitted logistic curve, each estimated class probability value indicating a probability that the packet flow on which the output score is based belongs to the traffic class associated with the binary classifier associated with the calibrator. The classifier training system configured to generate a training data based on network information gained using flow and packet sampling methods. In some embodiments, the classifier training system configured to generate reduced training data sets, one for each traffic class, reducing the training data related to traffic not associated with the traffic class.
    • 流量分类器具有多个二进制分类器,每个二进制分类器与多个校准器之一相关联。 每个校准器被训练成使用拟合的逻辑曲线将相关联的二进制分类器的输出得分转换成估计的类概率值,每个估计的类概率值指示输出得分所基于的分组流的概率属于相关联的流量类别 与校准器相关联的二进制分类器。 分类器训练系统被配置为基于使用流和分组采样方法获得的网络信息生成训练数据。 在一些实施例中,分类器训练系统被配置为生成减少的训练数据集,每个业务类别一个,减少与业务类别不相关的业务相关的训练数据。
    • 10. 发明授权
    • System and method for sampling network traffic
    • 系统和方法对网络流量进行采样
    • US07957315B2
    • 2011-06-07
    • US12342957
    • 2008-12-23
    • Nicholas DuffieldLee M. BreslauCheng EeAlexandre GerberCarsten LundSubhabrata Sen
    • Nicholas DuffieldLee M. BreslauCheng EeAlexandre GerberCarsten LundSubhabrata Sen
    • H04L12/26
    • H04L43/04H04L43/022H04L43/026H04L43/062
    • Disclosed herein are systems, computer-implemented methods, and computer-readable media for sampling network traffic. The method includes receiving a plurality of flow records, calculating a hash for each flow record based on one or more invariant part of a respective flow, generating a quasi-random number from the calculated hash for each respective flow record, and sampling flow records having a quasi-random number below a probability P. Invariant parts of flow records include destination IP address, source IP address, TCP/UDP port numbers, TCP flags, and network protocol. A plurality of routers can uniformly calculate hashes for flow records. Each router in a plurality of routers can generate a same quasi-random number for each respective flow record and uses different values for probability P. The probability P can depend on a flow size. The method can divide the quasi-random number by a maximum possible hash value.
    • 本文公开了系统,计算机实现的方法和用于对网络业务进行采样的计算机可读介质。 该方法包括:接收多个流记录,基于相应流的一个或多个不变部分计算每个流记录的散列,从针对每个相应流记录的计算出的散列生成准随机数,以及对具有 低于概率P的准随机数。流记录的不变部分包括目的地IP地址,源IP地址,TCP / UDP端口号,TCP标志和网络协议。 多个路由器可以统一计算流记录的哈希值。 多个路由器中的每个路由器可以为每个相应的流记录生成相同的准随机数,并对概率P使用不同的值。概率P可以取决于流量大小。 该方法可以将准随机数除以最大可能的哈希值。