会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • TECHNIQUES FOR UPDATING A PARTIAL DIALOG STATE
    • 更新部分对话状态的技术
    • US20150095033A1
    • 2015-04-02
    • US14044802
    • 2013-10-02
    • Microsoft Corporation
    • Daniel BoiesRuhi SarikayaAlexandre RochetteZhaleh FeizollahiNikhil Ramesh
    • G10L15/18
    • G10L15/1815G06F17/2785G06F17/30654
    • Embodiments provide for tracking a partial dialog state as part of managing a dialog state space, but the embodiments are not so limited. A method of an embodiment jointly models partial state update and named entity recognition using a sequence-based classification or other model, wherein recognition of named entities and a partial state update can be performed in a single processing stage at runtime to generate a distribution over partial dialog states. A system of an embodiment is configured to generate a distribution over partial dialog states at runtime in part using a sequence classification decoding or other algorithm to generate one or more partial dialog state hypothesis and/or a confidence score or measure associated with each hypothesis. Other embodiments are included.
    • 实施例提供了用于跟踪部分对话状态作为管理对话状态空间的一部分,但是实施例不限于此。 实施例的方法使用基于序列的分类或其他模型联合地模拟部分状态更新和命名实体识别,其中可以在运行时在单个处理阶段中执行命名实体的识别和部分状态更新,以生成部分分布 对话状态。 实施例的系统被配置为在运行时部分地使用序列分类解码或其他算法在部分对话状态下生成分布,以生成与每个假设相关联的一个或多个部分对话状态假设和/或置信度分数或度量。 包括其他实施例。
    • 3. 发明申请
    • USING HUMAN PERCEPTION IN BUILDING LANGUAGE UNDERSTANDING MODELS
    • 在建筑语言理解模型中使用人类感觉
    • US20140278355A1
    • 2014-09-18
    • US13826173
    • 2013-03-14
    • MICROSOFT CORPORATION
    • Ruhi SarikayaAnoop DeorasFethiye Asli CelikyilmazZhaleh Feizollahi
    • G10L17/04
    • G06F17/28G06F17/2785
    • An understanding model is trained to account for human perception of the perceived relative importance of different tagged items (e.g. slot/intent/domain). Instead of treating each tagged item as equally important, human perception is used to adjust the training of the understanding model by associating a perceived weight with each of the different predicted items. The relative perceptual importance of the different items may be modeled using different methods (e.g. as a simple weight vector, a model trained using features (lexical, knowledge, slot type, . . . ), and the like). The perceptual weight vector and/or or model are incorporated into the understanding model training process where items that are perceptually more important are weighted more heavily as compared to the items that are determined by human perception as less important.
    • 训练理解模型以考虑人类对不同标记项目(例如时隙/意图/域)的感知相对重要性的感知。 不是将每个被标记的项目视为同样重要的,人的感知被用于通过将感知权重与每个不同的预测项相关联来调整理解模型的训练。 可以使用不同的方法(例如,作为简单的权重向量,使用特征训练的模型(词汇,知识,时隙类型等))来对不同项目的相对感知重要性进行建模。 感知权重向量和/或或模型被并入到理解模型训练过程中,其中感知上更重要的项目与由人类感知确定的项目相比不太重要的比较更加重。