会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明授权
    • 3D-2D adaptive shape model supported motion compensated reconstruction
    • 3D-2D自适应形状模型支持运动补偿重建
    • US08446408B2
    • 2013-05-21
    • US11997340
    • 2006-07-12
    • Michael GrassVolker RascheDirk Schaefer
    • Michael GrassVolker RascheDirk Schaefer
    • G06T15/00
    • G06T11/005G06T2211/412
    • A method for generating or reconstruction of three-dimensional (3D) images corresponding to a structure of interest (60) including: acquiring a plurality of image projections corresponding to a structure of interest (60); applying a shape model (66) at a selected 3D seed point (64); and adapting the shape model (66) to represent the structure of interest (60), yielding an adapted shape model. A system for generation and reconstruction of three-dimensional (3D) images. The system (10) includes: an imaging system (12) configured to provide projection data corresponding to a structure of interest (60); and a controller (50) in operable communication with the imaging system (50). The controller (50) is configured to: receive the projection data, (64); apply a shape model (66) at a selected 3D seed point (64); and adapt the shape model (66) to represent the structure of interest (60), thereby yielding an adapted shape model.
    • 一种用于生成或重建对应于感兴趣结构(60)的三维(3D)图像的方法,包括:获取与感兴趣结构相对应的多个图像投影(60); 在选定的3D种子点(64)处应用形状模型(66); 以及使形状模型(66)适应于表示感兴趣的结构(60),产生适应的形状模型。 一种用于三维(3D)图像的生成和重建的系统。 系统(10)包括:成像系统(12),被配置为提供对应于感兴趣结构(60)的投影数据; 以及与成像系统(50)可操作地通信的控制器(50)。 控制器(50)被配置为:接收投影数据(64); 在选定的3D种子点(64)上应用形状模型(66); 并适应形状模型(66)来表示感兴趣的结构(60),从而产生适应的形状模型。
    • 7. 发明申请
    • ANGIOGRAPHIC IMAGE ACQUISITION SYSTEM AND METHOD WITH AUTOMATIC SHUTTER ADAPTATION FOR YIELDING A REDUCED FIELD OF VIEW COVERING A SEGMENTED TARGET STRUCTURE OR LESION FOR DECREASING X-RADIATION DOSE IN MINIMALLY INVASIVE X-RAY-GUIDED INTERVENTIONS
    • 具有自动切换器适应性的图像摄影系统和方法用于屏蔽减少的视野范围在微小的X射线引导干预中减少X辐射剂量的分离的目标结构或损伤
    • US20110182492A1
    • 2011-07-28
    • US13121800
    • 2009-10-07
    • Michael GrassDirk SchaeferGert Antonius Franciscus Schoonenberg
    • Michael GrassDirk SchaeferGert Antonius Franciscus Schoonenberg
    • G06K9/00G21K1/04
    • G06T11/008A61B6/06A61B6/4441A61B6/481A61B6/504A61B6/5247A61B6/542G06F19/00G06F19/321G06T15/08G06T2211/404G16H40/63
    • The present invention refers to an angiographic image acquisition system and method which can beneficially be used in the scope of minimally invasive image-guided interventions. In particular, the present invention relates to a system and method for graphically visualizing a pre-interventionally virtual 3D representation of a patient's coronary artery tree's vessel segments in a region of interest of a patient's cardiovascular system to be three-dimensionally reconstructed. Optionally, this 3D representation can then be fused with an intraoperatively acquired fluoroscopic 2D live image of an interventional tool. According to the present invention, said method comprises the steps of subjecting the image data set of the 3D representation associated with the precalculated optimal viewing angle to a 3D segmentation algorithm (S4) in order to find the contours of a target structure or lesion to be examined and interventionally treated within a region of interest and automatically adjusting (S5) a collimator wedge position and/or aperture of a shutter mechanism used for collimating an X-ray beam emitted by an X-ray source of a C-arm-based 3D rotational angiography device or rotational gantry-based CT imaging system to which the patient is exposed during an image-guided radiographic examination procedure based on data obtained as a result of said segmentation which indicate the contour and size of said target structure or lesion. The aim is to reduce the region of interest to a field of view that covers said target structure or lesion together with a user-definable portion of the surrounding vasculature.
    • 本发明涉及一种血管造影图像采集系统和方法,可有利地用于微创图像引导干预的范围。 特别地,本发明涉及一种用于以图形方式可视化患者心血管系统感兴趣区域中的患者冠状动脉树血管段的预先介入虚拟3D表示以进行三维重构的系统和方法。 可选地,该3D表示随后可以与介入工具的术中获取的荧光透视2D实况图像融合。 根据本发明,所述方法包括以下步骤:将与预先计算的最佳视角相关联的3D表示的图像数据集进行3D分割算法(S4),以便将目标结构或病变的轮廓找到为 在感兴趣区域内进行检查和介入处理,并自动调整(S5)用于准直由基于C臂的3D的X射线源发射的X射线束的快门机构的准直器楔位置和/或孔径 旋转血管造影装置或基于旋转台架的CT成像系统,其中基于由所述分割结果获得的指示所述目标结构或病变的轮廓和大小的图像引导放射线检查程序期间所述患者暴露于所述CT成像系统。 目的是将感兴趣的区域减少到覆盖所述目标结构或病变的视野以及周围脉管系统的用户可定义的部分。
    • 10. 发明授权
    • Reconstruction for cone-beam computed tomography imaging with off-center flat panel detector
    • 用偏心平板检测器进行锥束计算机断层扫描成像的重建
    • US09087404B2
    • 2015-07-21
    • US13697445
    • 2011-04-25
    • Eberhard S. HansisDirk SchaeferMichael Grass
    • Eberhard S. HansisDirk SchaeferMichael Grass
    • G01N23/04G06T1/00G06T11/00
    • G06T11/008G06T11/006G06T2211/432
    • Computed tomography (CT) reconstruction includes reconstructing an axially extended reconstructed image from a measured cone beam x-ray projection data set (Pm), optionally having an off-center geometry. The reconstructing is performed for an extended volume (eFOV) comprising a reconstructable volume (rFOV) of the measured cone beam x ray data set that is extended along the axial direction. The projection data set may be weighted in the volume domain. Iterative reconstruction may be used, including initializing a constant volume and performing one or more iterations employing a first iterative update followed by one or more iterations employing a second, different iterative update. Alternatively, backprojection filtration (BPF) reconstruction may be used, including transforming the projection data set to a new geometry including finite differences between neighboring projection views and performing BPF using Hilbert filtering along a plurality of different directions and averaging the resultant reconstructed images to generate the final reconstructed image.
    • 计算机断层摄影(CT)重建包括从测量的锥形束X射线投影数据集(Pm)重建轴向延伸的重建图像,可选地具有偏心几何。 对包括沿轴向延伸的测量的锥形束x射线数据集的可重建体积(rFOV)的扩展体积(eFOV)进行重建。 投影数据集可以在体积域中加权。 可以使用迭代重建,包括初始化恒定体积并且使用第一迭代更新执行一个或多个迭代,随后使用第二,不同迭代更新的一个或多个迭代。 或者,可以使用反投影过滤(BPF)重建,包括将投影数据集变换为包括相邻投影视图之间的有限差异的新几何,并且使用沿着多个不同方向的希尔伯特滤波来执行BPF,并平均所得到的重建图像以产生 最终重建图像。