会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Joint inversion processing method for resistivity and acoustic well log
data
    • 电阻率和声测井数据联合反演处理方法
    • US5870690A
    • 1999-02-09
    • US794896
    • 1997-02-05
    • Michael FrenkelAlberto G. MezzatestaKurt-M. StrackXiaoming TangKeeva Vozoff
    • Michael FrenkelAlberto G. MezzatestaKurt-M. StrackXiaoming TangKeeva Vozoff
    • G01V1/48G01V11/00G06F17/10G06F19/00
    • G06F17/10G01V1/48G01V11/00
    • A method of joint inversion processing acoustic velocity and electrical resistivity well log data. The method includes generating an initial model of earth formations over an interval of interest. The initial model corresponds to earth formations for which the acoustic velocity and resistivity well log data have been measured. The initial model includes layers each having a geometry, a value of resistivity and a value of acoustic velocity. Acoustic velocity and resistivity data are synthesized based on the initial model. Differences are determined between the synthesized data and the measured data. The initial model is adjusted and the steps of synthesizing the log data and determining the differences are repeated until the differences reach a minimum, thereby generating a final model of the earth formations. The step of adjusting includes determining a coupling relationship between the acoustic velocity and the resistivity for the earth formations, and generating an inverse Jacobian matrix of sensitivity functions of the resistivity and acoustic velocity with respect to the geometry and the coupling relationship.
    • 一种联合反演处理声速和电阻率测井数据的方法。 该方法包括在感兴趣的间隔内产生地层的初始模型。 初始模型对应于测量声速和电阻率测井数据的地层。 初始模型包括各自具有几何形状,电阻值和声速值的层。 基于初始模型合成声速和电阻率数据。 在合成数据和测量数据之间确定差异。 调整初始模型,并重复合成对数数据和确定差异的步骤,直到差异达到最小值,从而生成地层的最终模型。 调整步骤包括确定声速和地层的电阻率之间的耦合关系,以及生成相对于几何形状和耦合关系的电阻率和声速的灵敏度函数的逆雅可比矩阵。
    • 3. 发明授权
    • Well logging data interpretation systems and methods
    • 测井数据解释系统和方法
    • US5889729A
    • 1999-03-30
    • US723037
    • 1996-09-30
    • Michael A. FrenkelAlberto G. Mezzatesta
    • Michael A. FrenkelAlberto G. Mezzatesta
    • G01V1/28G01V3/20G01V1/00
    • G01V3/20
    • A system has been invented for producing a final earth model of part of an earth formation having N (one or more) layers, the method including, in one aspect, generating an initial earth model based on raw data produced by a wellbore logging tool at a location in a borehole through the earth, performing 2-D forward modeling on the initial earth model to produce an interim earth model that includes a set of synthetic tool responses data for the wellbore logging tool, comparing the synthetic tool response data to the raw data to determine whether there is misfit between them; if misfit between the synthetic tool response data and the raw data is acceptable, saving and storing the interim earth model as the final earth model; if misfit between the synthetic tool response data and the raw data is unacceptable, performing 1-D forward modeling N times on the interim earth model, producing a secondary earth model; performing 1-D inversion on the secondary earth model; and either saving the secondary earth model as the final earth model or re-subjecting the secondary earth model to 2-D forward modeling and subsequent misfit comparison. In one aspect the data is overcorrected following the N times 1-D forward modeling step. In one aspect the N times 1-D forward modeling step is accomplished by using a look-up table of stored values for synthetic tool responses. In one aspect the N time 1-D inversion step is accomplished by using such a look-up table.
    • 已经发明了一种用于生产具有N(一个或多个)层的地层的一部分的最终地球模型的系统,该方法包括在一个方面基于井眼测井工具产生的原始数据产生初始地球模型 在地球钻孔中的位置,在初始地球模型上执行2-D正演模拟,以产生临时地球模型,其包括用于井眼测井工具的一组合成工具响应数据,将合成工具响应数据与原始 数据确定它们之间是否存在错配; 如果合成工具响应数据与原始数据之间的误差可以接受,则将临时地球模型保存并存储为最终的地球模型; 如果合成工具响应数据与原始数据之间的失配是不可接受的,则在临时地球模型上执行1次正向建模N次,产生二次地球模型; 在二次地球模型上进行1-D反演; 并且将二次地球模型保存为最终的地球模型,或者将二次地球模型再次进行二维正演建模和随后的失配比较。 在一个方面,在N次1-D正向建模步骤之后,数据被过度校正。 在一个方面,通过使用用于合成工具响应的存储值的查找表来完成N次1-D正向建模步骤。 在一个方面,通过使用这样的查找表来完成N次1-D反转步骤。
    • 4. 发明授权
    • Radial sounding electrical well logging instrument
    • 径向探测电测井仪
    • US6060886A
    • 2000-05-09
    • US7159
    • 1998-01-14
    • Leonty A. TabarovskyAntonio FabrisAlberto G. MezzatestaGregory B. Itskovich
    • Leonty A. TabarovskyAntonio FabrisAlberto G. MezzatestaGregory B. Itskovich
    • G01V3/24G01V3/18
    • G01V3/24
    • An apparatus for determining radial distribution of resistivity of earth formations surrounding a wellbore. The apparatus includes a sonde mandrel having an insulating exterior surface and electrodes disposed on the insulating surface at spaced apart locations. The electrodes are connected to circuits for measuring a focused current resistivity within a predetermined longitudinal span. The electrodes are also connected to circuits for measuring electrical impedance between pairs of electrodes spaced apart at a plurality of different longitudinal spacings. The preferred embodiment includes a voltage measuring circuit interconnected between a pair of electrodes which is positioned between a closest spaced pair of electrodes connected to the impedance measuring circuits, so that a vertical resolution of the impedance measurements can be limited to approximately the axial spacing of the pair of electrodes connected to the voltage measuring circuit. A method according to the invention for determining the distribution of resistivity of earth formations surrounding a wellbore includes the steps of measuring a focused current resistivity of the earth formations to determine a composite resistivity of an uninvaded zone, an invaded zone and a flushed zone. Impedance is measured between pairs of electrodes, each pair having a different longitudinal spacing, and resistivity of the flushed zone and the invaded zone are determined from the measurements of impedance. The resistivity of the uninvaded zone can then be determined from the measurement of focused current resistivity.
    • 一种用于确定井筒周围的地层的电阻率的径向分布的装置。 该设备包括具有绝缘外表面的探头心轴和在间隔开的位置处设置在绝缘表面上的电极。 电极连接到用于测量预定纵向跨度内的聚焦电流电阻率的电路。 电极还连接到用于测量以多个不同纵向间隔间隔开的电极对之间的电阻抗的电路。 优选实施例包括互连在一对电极之间的电压测量电路,该对电极位于连接到阻抗测量电路的最近间隔的一对电极之间,使得阻抗测量的垂直分辨率可以被限制在近似于 一对电极连接到电压测量电路。 根据本发明的用于确定围绕井筒的地层的电阻率分布的方法包括以下步骤:测量地层的聚焦电流电阻率以确定未浸没区域,入侵区域和冲洗区域的复合电阻率。 电阻对之间测量阻抗,每对电极具有不同的纵向间隔,并且从阻抗的测量值确定冲洗区域和入侵区域的电阻率。 然后可以从聚焦电流电阻率的测量来确定非浸没区域的电阻率。
    • 5. 发明授权
    • Method and apparatus for determining the resistivity and conductivity of
geological formations surrounding a borehole
    • 用于确定钻孔周围地质构造的电阻率和电导率的方法和装置
    • US6060885A
    • 2000-05-09
    • US874218
    • 1997-06-13
    • Leonty A. TabarovskyAntonio FabrisAlberto G. Mezzatesta
    • Leonty A. TabarovskyAntonio FabrisAlberto G. Mezzatesta
    • G01V3/22G01V3/18
    • G01V3/22
    • A differential array instrument for determining selected parameters of an earth formation surrounding a borehole, including an instrument mandrel carrying a single source electrode for injecting an electrical current of a predetermined value into the formation surrounding the borehole, and an array of a plurality of measurement electrodes uniformly and vertically spaced from said source electrode along the instrument mandrel. A predetermined group of the uniformly and vertically spaced electrodes are adapted to derive first and second difference potentials between the predetermined group of electrodes, wherein successive ones of a plurality of the predetermined group of selected measuring electrodes uniformly and vertically spaced at increasing distances from the source electrode axially of the borehole are adapted to derive a plurality of the first and second difference potentials between the predetermined group of electrodes. The first and second difference potentials are derived in response to current from the source electrode travelling generally vertically in an orientation generally parallel to the axis of the borehole in the formation to successive ones of the predetermined groups of selected measuring electrodes and which plurality of first and second difference potentials may be correlated to a plurality of values representative of the selected formation parameters. The plurality of values representative of the selected formation parameters may provide a profile of the selected parameters over an increasing radial distance from the borehole.
    • 用于确定围绕钻孔的地层的选定参数的差分阵列仪器,包括承载用于将预定值的电流注入到钻孔周围的地层中的单个源电极的仪器心轴和多个测量电极的阵列 沿着仪器心轴与所述源电极均匀且垂直地间隔开。 均匀和垂直间隔开的电极的预定组适于导出预定电极组之间的第一和第二差电位,其中多个预定组的选定测量电极中的连续的电极以均匀且垂直方向间隔开距离源 钻孔轴向的电极适于导出预定电极组之间的多个第一和第二差电位。 第一和第二差异电位是响应来自源电极的电流导出的,所述电流大致垂直地沿着大致平行于地层中的钻孔的轴线的定向行进到所选择的测量电极的预定组中的连续的一个,并且多个第一和第 第二差分电位可以与表示所选择的地层参数的多个值相关。 代表所选择的地层参数的多个值可以在距钻孔的增加的径向距离上提供所选参数的轮廓。
    • 6. 发明授权
    • Method for processing the lapse measurements
    • 处理流逝测量的方法
    • US06344746B1
    • 2002-02-05
    • US09454690
    • 1999-12-03
    • Raghu K. ChunduruAlberto G. MezzatestaRainer Busch
    • Raghu K. ChunduruAlberto G. MezzatestaRainer Busch
    • G01V318
    • G01V11/00
    • Resistivity data acquired at two different epochs using different types of tools are jointly inverted. For example, a multiple propagation resistivity (MPR) tool is run first, preferably at several frequencies and several transmitter-receiver spacings. At a later epoch, an induction tool may be run, preferably on a wireline. The joint inversion process identifies bed boundaries based on inflection points in the propagation resistivity and induction logging raw data. An initial guess for an uninvaded earth model is generated using the selected bed boundaries and the apparent raw resistivity values. An inversion run using shallow measurements of propagation resistivity logging data is performed to estimate a resistivity structure representative of the near borehole zone resistivity (invaded zone). The bed boundary positions of the layers are also updated as part of the inversion process. Synthetic data for both the shallow and deep measurements are generated to delineate the invasion zones. If the data match is good for both shallow and deep subarrays, then the model obtained from the shallow data is used as the final model for the inversion. In the event the data match is good for short subarrays and not for long subarrays, a final inversion run is performed by introducing invasion in the earth model. The method may be used for inverting data obtained from wireline, MWD or permanently implanted sensors at two or more epochs.
    • 使用不同类型工具在两个不同时期获取的电阻率数据被共同反转。 例如,首先运行多传播电阻率(MPR)工具,优选地在几个频率和几个发射器 - 接收器间隔处运行。 在稍后的时代,可以运行感应工具,优选在有线上运行。 联合反演过程基于传播电阻率和感应测井原始数据中的拐点识别床边界。 使用选定的床边界和表观原始电阻率值产生无侵蚀地球模型的初始猜测。 进行使用传播电阻率测井数据的浅测量的反演运行,以估计代表近钻孔区电阻率(入侵区)的电阻率结构。 层的床边界位置也作为反演过程的一部分被更新。 产生浅和深测量的合成数据,以描绘入侵区。 如果数据匹配对浅层和深层子阵列都有好处,则从浅层数据获得的模型被用作反演的最终模型。 如果数据匹配对于短的子阵列而言不利于长的子阵列,则通过在地球模型中引入入侵来执行最终的反演运行。 该方法可以用于在两个或更多个时期反转从有线,MWD或永久植入的传感器获得的数据。
    • 7. 发明授权
    • Generic, accurate, and real time borehole correction for resistivity tools
    • 通用,准确,实时的井眼修正电阻率工具
    • US06381542B1
    • 2002-04-30
    • US09543727
    • 2000-04-05
    • Zhiyi ZhangAlberto G. Mezzatesta
    • Zhiyi ZhangAlberto G. Mezzatesta
    • G01V318
    • G01V3/28G01V3/38
    • A Neural Net (NN) is trained, validated and used for borehole correction of resistivity logging data. In the training stage, the entire range of possibilities of earth models relevant to borehole compensation is sampled and a suite of tool responses is generated, with and without the borehole and the NN is trained to produce the corresponding borehole-free response. In the validation stage, the input to the NN comprises tool responses that were not used in the training of the NN and validation is based upon comparing the output of the NN to the corresponding borehole-free response. If the agreement is not good, then the NN is retrained with a different sampling of the earth model. The validated NN is then used to correct the borehole measurements. The borehole corrected measurements may be inverted using an additional neural net designed for the purpose.
    • 神经网络(NN)被训练,验证并用于电阻率测井数据的钻孔校正。 在训练阶段,对与井眼补偿相关的地球模型的全部可能性进行了采样,并产生了一套工具响应,无论是否有钻孔,NN都经过训练,以产生相应的无钻孔响应。 在验证阶段,NN的输入包括在NN的训练中没有使用的工具响应,验证是基于将NN的输出与相应的无钻孔响应进行比较。 如果协议不好,那么NN将用不同的地球模型取样来重新训练NN。 然后使用经验证的NN来校正钻孔测量。 可以使用为此目的设计的附加神经网络来反转钻孔校正的测量结果。