会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
    • 具有非晶硅和CIS及其合金的单片多结太阳能电池
    • US06368892B1
    • 2002-04-09
    • US09606298
    • 2000-06-29
    • Rajeewa R. Arya
    • Rajeewa R. Arya
    • H01L2120
    • H01L31/078H01L31/0322Y02E10/541Y02P70/521
    • Efficient broader spectrum monolithic solar cells are produced by coupling a CIS or CIGS polycrystalline semiconductor to an amorphous silicon semiconductor. Coupling can be accomplished with a n-type conductor, such as cadmium sulfide or microcrystalline n-duped amorphous silicon. Cadmium sulfide can be deposited on the CIS or CIGS polycrystalline semiconductor by solution growth, sputtering or evaporation. A transparent conductive oxide can be deposited on the cadmium sulfide by low pressure chemical vapor deposition. The microcrystalline n-doped amorphous silicon and the amorphous silicon semiconductor can be deposited by enhanced plasma chemical vapor deposition. The amorphous silicon can comprise: hydrogenated amorphous silicon, hydrogenated amorphous silicon carbon, or hydrogenated amorphous silicon germanium. Triple junction solar cells can be produced with an amorphous silicon front cell, an amorphous silicon germanium middle cell, and a CIS or CIGS polycrystalline back cell, on a substrate.
    • 通过将CIS或CIGS多晶半导体耦合到非晶硅半导体来生产有效的宽频单片太阳能电池。 可以用n型导体,例如硫化镉或微晶n掺杂非晶硅来实现耦合。 硫化镉可以通过溶液生长,溅射或蒸发沉积在CIS或CIGS多晶半导体上。 透明导电氧化物可以通过低压化学气相沉积沉积在硫化镉上。 可以通过增强的等离子体化学气相沉积来沉积微晶n掺杂非晶硅和非晶硅半导体。 非晶硅可以包括:氢化非晶硅,氢化非晶硅碳或氢化非晶硅锗。 可以在衬底上用非晶硅前电池,非晶硅锗中间电池和CIS或CIGS多晶背电池制造三联结太阳能电池。
    • 6. 发明授权
    • Method of removing electrical shorts and shunts from a thin-film
semiconductor device
    • 从薄膜半导体器件去除电短路和分路的方法
    • US4749454A
    • 1988-06-07
    • US931072
    • 1986-11-17
    • Rajeewa R. AryaRobert S. Oswald
    • Rajeewa R. AryaRobert S. Oswald
    • H01L31/04H01L21/28H01L21/316H01L21/3213H01L27/142H01L31/20C25F3/12
    • H01L31/208H01L21/28H01L21/31687H01L21/32134H01L31/046Y02E10/50Y02P70/521Y10S136/29
    • A method of removing electrical shorts and shunts from a thin-film semiconductor device having pairs of electrodes with exposed contact surfaces wherein each pair of electrodes is separated by a semiconductor film. The disclosed method comprises the steps of coating the exposed contact surfaces with an ionic solution and successively applying a reverse-bias voltage between the exposed contact surfaces of each pair of electrodes. The ionic solution has an etching rate that increases with increased temperature so that the leakage current flowing through shorts and shunts located between each respective pair of electrodes in response to the reverse-bias voltage will create a local temperature increase at the shorts and shunts and selectively etch or oxidize the shorts and shunts, rendering them substantially nonconductive. The exposed contact surfaces can be coated using a sponge applicator or spray apparatus. The preferred ionic solution comprises an acid mixture diluted to one part in at least five parts water.
    • 从具有暴露的接触表面的电极对的薄膜半导体器件中去除电短路和分流的方法,其中每对电极被半导体膜分离。 所公开的方法包括以下步骤:用离子溶液涂覆暴露的接触表面,并且在每对电极的暴露的接触表面之间连续施加反向偏置电压。 离子溶液具有随着温度升高而增加的蚀刻速率,使得响应于反向偏置电压流过位于每对相应电极之间的短路和分路的漏电流将在短路和分流和选择性地产生局部温度升高 蚀刻或氧化短路和分路,使它们基本上不导电。 暴露的接触表面可以使用海绵施用器或喷雾装置进行涂覆。 优选的离子溶液包含在至少五份水中稀释至一部分的酸混合物。