会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Depth of interaction detector block for high resolution positron emission tomography
    • 用于高分辨率正电子发射断层扫描的相互作用探测器块的深度
    • US06288399B1
    • 2001-09-11
    • US09190661
    • 1998-11-12
    • Mark S. AndreacoCharles W. WilliamsMichael E. CaseyRonald Nutt
    • Mark S. AndreacoCharles W. WilliamsMichael E. CaseyRonald Nutt
    • G01T1164
    • G01T1/1642A61B6/037G01T1/171G01T1/2008
    • A depth of interaction detector block for improving the spatial resolution and uniformity in modern high resolution PET systems over an entire FOV. An LSO crystal layer, a GSO crystal layer, and a light guide are stacked on each other and mounted on a 2×2 PMT set, so that the corners of the phoswich are positioned over the PMT centers. The crystal phoswich is cut into a matrix of discrete crystals. The separation of the LSO and the GSO layers by pulse shape discrimination allows discrete DOI information to be obtained. The block design provides an external light guide used to share the scintillation light in four PMTs. The 4 PMT signals Si are connected to an amplifier box which offers a 4 pole semi-Gaussian shaping for each of the four PMT signals, a sample clock for triggering the ADC cards and a fast sum signal &Sgr;iSi of the four PMT signals Si for pulse shape discrimination. A CFD provides a START signal for the time to pulse height converter. The fast sum signal is in addition differentiated and integrated with a fast filter amplifier and connected to a CFD, which provides a STOP signal for the TAC. The outputs of the shaped PMT signals and the TAC are connected to two ADC cards running under computer control.
    • 相互作用探测器块的深度,用于改善现代高分辨率PET系统在整个FOV中的空间分辨率和均匀性。 将LSO晶体层,GSO晶体层和导光体彼此堆叠并安装在2x2PMT组上,使得phoswich的角部位于PMT中心上方。 将晶体切片切割成离散晶体的矩阵。 通过脉冲形状识别分离LSO和GSO层可以获得离散的DOI信息。 块设计提供了一个用于在四个PMT中共享闪烁灯的外部光导。 4个PMT信号Si连接到放大器盒,该放大器盒为四个PMT信号中的每一个提供4极半高斯整形,用于触发ADC卡的采样时钟和用于脉冲的四个PMT信号Si的快速和信号SIGMAiSi 形状辨别。 CFD为脉冲高度转换器提供START信号。 快速和信号另外区分并与快速滤波放大器集成,并连接到CFD,为CF提供STOP信号。 成形PMT信号和TAC的输出连接到在计算机控制下运行的两个ADC卡。
    • 2. 发明授权
    • Scintillation detector array for encoding the energy, position, and time coordinates of gamma ray interactions
    • 闪烁探测器阵列,用于编码伽马射线相互作用的能量,位置和时间坐标
    • US06362479B1
    • 2002-03-26
    • US09272228
    • 1999-03-18
    • Mark S. AndreacoCharles W. WilliamsRonald NuttMichael E. Casey
    • Mark S. AndreacoCharles W. WilliamsRonald NuttMichael E. Casey
    • G01T120
    • G01T1/1644A61B6/037G01T1/1648
    • A scintillation detector which includes a plurality of discrete scintillators composed of one or more scintillator materials. The discrete scintillators interact with incident radiation to produce a quantifiable number of photons with characteristic emission wavelength and decay time. A light guide is operatively associated with the scintillation crystals and may be either active or non-active and segmented or non-segmented depending upon the embodiment of the design. Photodetectors are provided to sense and quantify the scintillation light emissions. The process and system embodying various features of the present invention can be utilized in various applications such as SPECT, PET imaging and simultaneous PET systems. In accordance with the present invention, the detector array of the present invention incorporates either a single scintillator layer of discrete scintillators or discrete scintillators composed of two stacked different layers that can be the same scintillator material or of two different scintillator materials. In either case the different layers are composed of materials that have distinctly different decay times. The variants in these figures are the types of optical detectors which are used, i.e. photomultipliers and/or photodiodes, whether or not a segmented optical light guide is used, and whether the light guide is active or non-active. If a segmented optical light guide is used then the variant is whether the configuration is inverted or non-inverted.
    • 闪烁检测器,其包括由一个或多个闪烁体材料组成的多个分立的闪烁体。 离散的闪烁体与入射辐射相互作用以产生具有特征发射波长和衰减时间的可量化数量的光子。 光引导件与闪烁晶体可操作地相关联,并且可以是有源的或非有效的,并且根据设计的实施例是分段的或非分段的。 提供光电检测器来感测和量化闪烁光发射。 体现本发明各种特征的方法和系统可以用于诸如SPECT,PET成像和同时PET系统的各种应用中。 根据本发明,本发明的检测器阵列包括单个闪烁体层的离散闪烁体或由两层不同层组成的分立闪烁体,其可以是相同的闪烁体材料或两种不同的闪烁体材料。 在任一情况下,不同的层由具有截然不同的衰变时间的材料组成。 这些图中的变型是使用的光学检测器的类型,即光电倍增管和/或光电二极管,是否使用分段的光学光导,以及光导是活动的还是非活动的。 如果使用分段光学光导,则该变体是配置是倒置还是非反转。
    • 4. 发明授权
    • Method for producing a high resolution detector array
    • 高分辨率检测器阵列的制造方法
    • US06749761B1
    • 2004-06-15
    • US09972339
    • 2001-10-05
    • Mark S. AndreacoCharles W. WilliamsJ. Clifton MoyersKeith Valgneur
    • Mark S. AndreacoCharles W. WilliamsJ. Clifton MoyersKeith Valgneur
    • B29D1100
    • G01T1/2002G01T1/202
    • A method for producing a high resolution detector array so as to provide very high packing fraction, i.e. the distance between scintillator elements is minimized so the detector efficiency will be higher than is currently achievable. In the preferred embodiment of the present invention, the fabrication methodology is enhanced by handling LSO bars rather than single crystals when gluing on the Lumirror® as well as etching the LSO. Namely, an LSO boule is cut into wide bars of a selected dimension, for example 30 mm, which are then acid etched or mechanically polished. A selected number, N, of these LSO bars can then be glued together with Lumirror® sheets between each bar (coating the LSO disks and Lumirror® sheets with Epotek 301-2). The glued bar block is then cut again into bars in a perpendicular direction, and these new LSO-Lumirror® bars are etched. Finally, a selected number, M, of these LSO-Lumirror® bars are glued together with Lumirror® sheets between each bar; thus creating an etched N×M LSO-Lumirror® array, (where M may or may not be equal to N), without having to handle individual LSO crystals or small Lumirror® pieces.
    • 用于产生高分辨率检测器阵列以提供非常高的填充分数的方法,即闪烁体元件之间的距离被最小化,因此检测器效率将高于目前可实现的。 在本发明的优选实施例中,通过在胶合在Lumirror上以及蚀刻LSO时,通过处理LSO条而不是单晶来增强制造方法。 也就是说,将LSO毛坯切成选定尺寸的宽条,例如30mm,然后进行酸蚀或机械抛光。 然后可以将这些LSO条的所选数量N,与每个条之间的Lumirror(Epotek 301-2涂覆LSO盘和Lumirror纸)粘合在一起。 然后将胶合棒块沿垂直方向再次切成杆,并且蚀刻这些新的LSO-Lumirror(R)棒。 最后,将这些LSO-Lumirror(R)棒的选定数量M与在每个条之间的Lumirror胶合在一起; 从而产生蚀刻的NxM LSO-Lumirror阵列(其中M可以或可以不等于N),而不必处理单独的LSO晶体或小的Lumirror(R)片。
    • 5. 发明授权
    • Method for producing a high resolution detector array
    • 高分辨率检测器阵列的制造方法
    • US07157014B1
    • 2007-01-02
    • US10693116
    • 2003-10-24
    • Mark S. AndreacoCharles W. WilliamsJ. Clifton MoyersKeith Vaigneur
    • Mark S. AndreacoCharles W. WilliamsJ. Clifton MoyersKeith Vaigneur
    • B29D11/00
    • B29D11/0074G01T1/202
    • A method for producing a high resolution detector array so as to provide very high packing fraction, i.e. the distance between scintillator elements is minimized so the detector efficiency will be higher than is currently achievable. In the preferred embodiment of the present invention, the fabrication methodology is enhanced by handling scintillator bars rather than single crystals when gluing on an optical film as well as polishing the scintillator. Namely, a scintillator boule is cut into wide bars of a selected dimension, for example 30 mm, which are then acid etched or mechanically polished. A selected number, N, of these scintillator bars can then be glued together with sheets of optical film between each bar (coating the scintillator disks and optical film with an adhesive of a selected index of refraction). The glued bar block is then cut again into bars in a perpendicular direction, and these new scintillator-optical film bars are polished. Finally, a selected number, M, of these scintillator-optical film bars are glued together with sheets of optical film between each bar; thus creating a polished N×M scintillator-optical film array, (where M may or may not be equal to N), without having to handle individual scintillator crystals or small pieces of optical film.
    • 用于产生高分辨率检测器阵列以提供非常高的填充分数的方法,即闪烁体元件之间的距离被最小化,因此检测器效率将高于目前可实现的。 在本发明的优选实施例中,通过在胶合在光学膜上以及抛光闪烁体时处理闪烁体棒而不是单晶来增强制造方法。 也就是说,将闪烁体棒切割成选定尺寸的宽条,例如30mm,然后进行酸蚀或机械抛光。 然后可以将这些闪烁棒的所选数量N与每个条之间的光学膜胶合在一起(用所选择的折射率的粘合剂涂覆闪烁体盘和光学膜)。 然后将胶合棒块沿垂直方向再次切割成棒,并且这些新的闪烁体 - 光学薄膜棒被抛光。 最后,将这些闪烁体 - 光学薄膜条的选定数量M与每个条之间的光学薄膜胶合在一起; 从而产生抛光的NxM闪烁体 - 光学膜阵列(其中M可以或不等于N),而不必处理单个闪烁体晶体或小片光学膜。
    • 6. 发明授权
    • Method for producing a high resolution detector array
    • 高分辨率检测器阵列的制造方法
    • US07244942B2
    • 2007-07-17
    • US10867616
    • 2004-06-15
    • Mark S. AndreacoCharles W. WilliamsJ. Clifton MoyersKeith Vaigneur
    • Mark S. AndreacoCharles W. WilliamsJ. Clifton MoyersKeith Vaigneur
    • G01T1/24
    • G01T1/2002G01T1/202
    • A method for producing a high resolution detector array so as to provide very high packing fraction, i.e., the distance between scintillator elements is minimized so the detector efficiency will be higher than is currently achievable. In the preferred embodiment of the present invention, the fabrication methodology is enhanced by handling LSO bars rather than single crystals when gluing on the Lumirror® as well as etching the LSO. Namely, an LSO boule is cut into wide bars of a selected dimension, for example 30 mm, which are then acid etched or mechanically polished. A selected number, N, of these LSO bars can then be glued together with Lumirror® sheets between each bar (coating the LSO disks and Lumirror® sheets with Epotek 301-2). The glued bar block is then cut again into bars in a perpendicular direction, and these new LSO-Lumirror® bars are etched. Finally, a selected number, M, of these LSO-Lumirror® bars are glued together with Lumirror® sheets between each bar; thus creating an etched N×M LSO-Lumirror® array, (where M may or may not be equal to N), without having to handle individual LSO crystals or small Lumirror® pieces.
    • 用于产生高分辨率检测器阵列以提供非常高的填充率,即闪烁体元件之间的距离的方法被最小化,因此检测器效率将高于目前可实现的。 在本发明的优选实施例中,通过在胶合在Lumirror上以及蚀刻LSO时,通过处理LSO条而不是单晶来增强制造方法。 也就是说,将LSO毛坯切成选定尺寸的宽条,例如30mm,然后进行酸蚀或机械抛光。 然后可以将这些LSO条的所选数量N,与每个条之间的Lumirror(Epotek 301-2涂覆LSO盘和Lumirror纸)粘合在一起。 然后将胶合棒块沿垂直方向再次切成杆,并且蚀刻这些新的LSO-Lumirror(R)棒。 最后,将这些LSO-Lumirror(R)棒的选定数量M与在每个条之间的Lumirror胶合在一起; 从而产生蚀刻的NxM LSO-Lumirror阵列(其中M可以或可以不等于N),而不必处理单独的LSO晶体或小的Lumirror(R)片。
    • 7. 发明授权
    • Method for fabrication of a detector component using laser technology
    • 使用激光技术制造检测器部件的方法
    • US08470214B2
    • 2013-06-25
    • US10856225
    • 2004-05-28
    • James L. CorbeilTroy MarlarMatthias J. SchmandNiraj K. DoshiMark S. Andreaco
    • James L. CorbeilTroy MarlarMatthias J. SchmandNiraj K. DoshiMark S. Andreaco
    • B29D11/00
    • G01T1/20B23K2103/50G01T1/2002
    • A method for fabricating a detector or light guide using laser technology. The method yields a detector component such as a scintillator, light guide or optical sensor which provides for the internal manipulation of light waves via the strategic formation of micro-voids to enhance control and collection of scintillation light, allowing for accurate decoding of the impinging radiation. The method uses laser technology to create micro-voids within a target media to optically segment the media. The micro-voids are positioned to define optical boundaries of the optically-segmented portions forming virtual resolution elements within the scintillator. Each micro-void is formed at its selected location using a laser source. The laser source generates and focuses a beam of light into the target media sequentially to form the micro-voids. The laser beam ablates the media at the focal point, thereby yielding the micro-void.
    • 一种使用激光技术制造检测器或导光体的方法。 该方法产生诸如闪烁体,光导或光学传感器的检测器组件,其通过微空隙的战略形成提供对光波的内部操纵,以增强闪烁光的控制和收集,允许对入射辐射的精确解码 。 该方法使用激光技术在目标介质内产生微孔,以光学分段介质。 微孔被定位以限定在闪烁体内形成虚拟分辨元件的光学分割部分的光学边界。 使用激光源在其选定位置形成每个微孔。 激光源产生并将光束聚焦到目标介质中以形成微空隙。 激光束在焦点处消融介质,从而产生微孔。
    • 10. 发明授权
    • Method for precision cutting of soluble scintillator materials
    • 可溶性闪烁体材料的精密切割方法
    • US06328027B1
    • 2001-12-11
    • US09438729
    • 1999-11-11
    • Dennis E. PersykMark S. Andreaco
    • Dennis E. PersykMark S. Andreaco
    • B28D108
    • B26D1/46B26D7/08B28D5/045
    • A method for precision cutting liquid soluble scintillator materials by an operator is disclosed, including the steps of providing a first run of a moving filament in operative proximity to cut the scintillator materials, concurrent with wetting at least the first run length of the moving filament with organic solvent, and engaging the wetted first run with the soluble scintillator materials for a time sufficient to create a kerf having cut surfaces with solvent thereon, with the kerf cut surfaces dissolved to reshape the kerf corners, and without the formation of surface hydrates. The wetting step is accompanied by providing a second run of the wetted filament in a reverse direction and engaging the scintillator materials. The first run and second run engaging steps are concurrent with tensioning the moving filament, producing kerfs through the scintillator materials, with organic solvent delivered onto kerf surfaces. The organic solvent, such as alcohol or organic-based solvent, dissolves the kerf surfaces and contiguous materials, softening the surfaces and producing precisely cut kerfs with gently radiused corners. Repetitive dicing, slitting, slotting and otherwise segmenting of the scintillator materials with the wetted moving filament creates precisely cut subunit scintillator materials with gently radiused corners. The method produces extremely precise kerfs in soluble scintillator materials with kerfs having gently radiused corners that are resistance to stress fractures, breakage, and cleavage during production and use of the scintillator materials.
    • 公开了一种通过操作者精确切割液体可溶性闪烁体材料的方法,包括以下步骤:提供操作性接近的第一次移动细丝以切割闪烁体材料,同时将至少移动细丝的第一游程长度与 有机溶剂,并使润湿的第一次运行与可溶性闪烁体材料接合足够长的时间以产生具有其上具有溶剂的切割表面的切口,切割表面被溶解以重新形成切口角,并且不形成表面水合物。 润湿步骤伴随着沿相反方向提供湿润长丝的第二次流动并与闪烁体材料接合。 第一次运行和第二次接合步骤同时张紧移动的细丝,通过闪烁体材料产生切口,并将有机溶剂输送到切口表面上。 有机溶剂,如醇或有机溶剂,可溶解切口表面和连续材料,软化表面,并产生精确切割的切口,轻轻的圆角。 用湿润的移动细丝重复切割,切割,开槽和以其他方式分割闪烁体材料,从而产生精确切割的亚基闪烁体材料,并具有轻微的圆角。 该方法在可溶性闪烁体材料中产生非常精确的切口,其切口具有温和圆角,其在生产和使用闪烁体材料期间具有抗应力断裂,断裂和断裂的能力。