会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • SOFT START FUEL CELL CONTROL STRATEGY
    • 软启动燃料电池控制策略
    • US20080236930A1
    • 2008-10-02
    • US11695270
    • 2007-04-02
    • Manish SinhaYeh-Hung LaiJohn C. Fagley
    • Manish SinhaYeh-Hung LaiJohn C. Fagley
    • H01M8/04B62D21/00
    • H01M8/04302H01M8/04007H01M8/04119H01M8/04223H01M8/04225H01M8/04268H01M8/04291H01M2008/1095H01M2250/20Y02T90/32
    • A method of operating an electrochemical conversion assembly is provided. According to the method, an assembly warm-up operation is executed by increasing the temperature TSTACK of the membrane electrode assembly. Next, stoichiometry-based control of the relative humidity (RH) of one of the reactant flowfields is initiated when the temperature TSTACK exceeds a threshold temperature T0. The stoichiometry-based RH control comprises a reduction in the relative humidity from a value RHWET exceeding 100% relative humidity to a value RHDRY less than 100% relative humidity. The relative humidity value RHDRY is sufficiently low to permit reduction of an initial membrane hydration λWET in the membrane electrode assembly. The reduction in the relative humidity to RHDRY is achieved by controlling the stoichiometry of the reactant flowfield and the temperature of the membrane electrode assembly such that the reduction to RHDRY decreases substantially continuously, relative to portions of the RH profile of the reactant flowfield prior to initiation of the stoichiometry-based control. The cell transitions from the stoichiometry-based RH control to generally elevated-temperature, temperature-based RH control when membrane hydration in the membrane electrode assembly falls below a target membrane hydration value λDRY. Additional methods and corresponding systems are contemplated.
    • 提供了一种操作电化学转化组件的方法。 根据该方法,通过增加膜电极组件的温度T< STACK>来执行组装预热操作。 接下来,当温度TststACK 超过阈值温度T 0 0时,开始基于对反应物流场之一的相对湿度(RH)的基于化学计量的控制。 基于化学计量的RH控制包括相对湿度从超过100%相对湿度的RH RH值降低到低于100%相对湿度的RH RH值。 相对湿度值RH 足够低以允许减少膜电极组件中的初始膜水合作用。 通过控制反应物流场的化学计量和膜电极组件的温度来实现相对湿度相对湿度的降低,使得RH RH的降低显着降低 在开始基于化学计量的控制之前相对于反应物流场的RH分布的部分连续地进行。 当膜电极组件中的膜水合降低到目标膜水合值λDRY 时,细胞从基于化学计量的RH控制转变为通常高温,基于温度的RH控制。 考虑附加的方法和相应的系统。
    • 6. 发明申请
    • DIAGNOSING INJECTOR FAILURE VIA STACK VOLTAGE RESPONSE ANALYSIS
    • 诊断注射器故障通过堆叠电压响应分析
    • US20140033801A1
    • 2014-02-06
    • US13564333
    • 2012-08-01
    • Manish SinhaDaniel C. Di FioreJohn C. FagleySteven R. Falta
    • Manish SinhaDaniel C. Di FioreJohn C. FagleySteven R. Falta
    • G01M3/04
    • H01M8/04686G01R31/362H01M8/04402H01M8/04559H01M8/04753Y02E60/50
    • A system and method for determining whether an anode injector that injects hydrogen gas into an anode side of a fuel cell stack has failed. The method includes monitoring a voltage of the fuel cell stack and performing spectral analysis of the stack voltage to identify amplitude peaks in the stack voltage. The method further includes determining whether the spectral analysis of the stack voltage has identified an amplitude peak at a location where an amplitude peak should occur if the injector is operating properly. If no amplitude peak is identified at that location, then the method determines that the injector is not operating properly. If an amplitude peak is identified at that location, then the method compares the amplitude peak to the desired amplitude peak to identify if it is within a threshold to determine if the injector is operating properly.
    • 用于确定将氢气注入燃料电池堆的阳极侧的阳极喷射器是否失效的系统和方法。 该方法包括监测燃料电池堆的电压并执行堆叠电压的光谱分析以识别堆叠电压中的幅度峰值。 该方法还包括确定堆叠电压的光谱分析是否已经在如果喷射器正常工作的情况下在振幅峰值应该发生的位置处确定了振幅峰值。 如果在该位置没有识别到​​振幅峰值,则该方法确定喷射器不能正常工作。 如果在该位置识别振幅峰值,则该方法将振幅峰值与期望振幅峰值进行比较,以识别其是否在阈值内以确定喷射器是否正常工作。
    • 7. 发明授权
    • Soft start fuel cell control strategy
    • 软启动燃料电池控制策略
    • US07687163B2
    • 2010-03-30
    • US11695270
    • 2007-04-02
    • Manish SinhaYeh-Hung LaiJohn C. Fagley
    • Manish SinhaYeh-Hung LaiJohn C. Fagley
    • H01M8/04
    • H01M8/04302H01M8/04007H01M8/04119H01M8/04223H01M8/04225H01M8/04268H01M8/04291H01M2008/1095H01M2250/20Y02T90/32
    • A method of operating an electrochemical conversion assembly is provided. According to the method, an assembly warm-up operation is executed by increasing the temperature TSTACK of the membrane electrode assembly. Next, stoichiometry-based control of the relative humidity (RH) of one of the reactant flowfields is initiated when the temperature TSTACK exceeds a threshold temperature T0. The stoichiometry-based RH control comprises a reduction in the relative humidity from a value RHWET exceeding 100% relative humidity to a value RHDRY less than 100% relative humidity. The relative humidity value RHDRY is sufficiently low to permit reduction of an initial membrane hydration λWET in the membrane electrode assembly. The reduction in the relative humidity to RHDRY is achieved by controlling the stoichiometry of the reactant flowfield and the temperature of the membrane electrode assembly such that the reduction to RHDRY decreases substantially continuously, relative to portions of the RH profile of the reactant flowfield prior to initiation of the stoichiometry-based control. The cell transitions from the stoichiometry-based RH control to generally elevated-temperature, temperature-based RH control when membrane hydration in the membrane electrode assembly falls below a target membrane hydration value λDRY. Additional methods and corresponding systems are contemplated.
    • 提供了一种操作电化学转化组件的方法。 根据该方法,通过增加膜电极组件的温度TSTACK来执行组装预热操作。 接下来,当温度TSTACK超过阈值温度T0时,开始对反应物流场之一的相对湿度(RH)的基于化学计量的控制。 基于化学计量的RH控制包括相对湿度从超过100%相对湿度的值RHWET降低到小于100%相对湿度的值RHDRY。 相对湿度值RHDRY足够低以允许减少膜电极组件中的初始膜水合作用λWET。 相对于RHDRY的相对湿度的降低通过控制反应物流场的化学计量和膜电极组件的温度来实现,使得相对于起始之前的反应物流场的RH分布的部分,RHDRY的减少基本上连续地减小 的基于化学计量的控制。 当膜电极组件中的膜水合降低到目标膜水合值λDRY以下时,细胞从基于化学计量的RH控制转变为通常高温,基于温度的RH控制。 考虑附加的方法和相应的系统。
    • 9. 发明授权
    • Using an effectiveness approach to model a fuel cell membrane humidification device
    • 使用有效的方法来模拟燃料电池膜加湿装置
    • US08431276B2
    • 2013-04-30
    • US12755315
    • 2010-04-06
    • Yan ZhangJohn C. Fagley
    • Yan ZhangJohn C. Fagley
    • H01M8/04G01N7/00H01M8/10
    • G05D22/02H01M4/0471
    • A method for determining the water transfer in a water vapor transfer unit of a fuel cell system that employs a model based approach. The method includes determining a capacity ratio of wet streams and dry streams flowing through the water vapor transfer unit, determining the number of mass transfer units of the water vapor transfer unit, estimating a mass transfer effectiveness value given the capacity ratio and the number of mass transfer units for the water vapor transfer unit, and determining the amount of water transferred in the water vapor transfer unit using the mass transfer effectiveness value, the mass flow rates on a dry basis of the dry stream and the wet stream, and the mass flow rates of water of the dry inlet stream and the wet inlet stream.
    • 一种用于确定采用基于模型的方法的燃料电池系统的水蒸气转移单元中的水分传递的方法。 该方法包括确定流经水蒸汽转移单元的湿流和干流的容量比,确定水蒸汽转移单元的传质单元数,估计容量比和质量数的质量传递有效值 用于水蒸汽转移单元的转移单元,以及使用传质有效性值确定在水蒸汽转移单元中传输的水的量,干流和湿流干质量流量以及质量流量 干燥入口流和湿入口流的水速率。