会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明申请
    • METHOD AND SYSTEM FOR BIOMETRIC AUTHENTICATION AND ENCRYPTION
    • 用于生物识别和加密的方法和系统
    • US20100017618A1
    • 2010-01-21
    • US12448596
    • 2006-12-28
    • Jovan GolicMadalina Baltatu
    • Jovan GolicMadalina Baltatu
    • H04L9/32
    • H04L9/0866G06K9/00288G07C9/00158H04L9/3231H04L2209/08H04L2209/34
    • A biometric user authentication method, includes enrolling a user based on user's biometric samples to generate user's reference data; and authenticating the user based on a user's live biometric sample and the user's reference data; wherein enrolling a user includes acquiring the user's biometric samples; extracting an enrollment feature vector from each user's biometric sample; computing a biometric reference template vector as a mean vector based on the enrollment feature vectors; computing a variation vector based on the enrollment feature vectors and the mean vector; randomly generating an enrollment secret vector; computing an enrollment code vector based on the enrollment secret vector and the variation vector; computing a difference vector as a wrap-around difference between the enrollment code vector and the mean vector; computing an error correction vector based on the enrollment secret vector to enable error correction during the user authentication phase according to a given error tolerance level, wherein the error correction vector is not computed if the error tolerance level is equal to zero; and storing the variation vector, the difference vector, and the error correction vector as a part of the user's reference data to be used during the user authentication phase.
    • 一种生物识别用户认证方法,包括基于用户的生物测定样本登记用户以产生用户参考数据; 以及基于用户的实时生物特征样本和用户的参考数据来认证用户; 其中登记用户包括获取所述用户的生物特征样本; 从每个用户的生物特征样本中提取注册特征向量; 基于所述登记特征向量计算生物特征参考模板向量作为平均向量; 基于注册特征向量和平均向量计算变量向量; 随机生成登记秘密向量; 基于登记秘密向量和变化向量计算登记码矢量; 计算差分矢量作为注册码矢量和平均矢量之间的环绕差; 基于所述登记秘密向量计算误差校正向量,以根据给定的误差容限级别在所述用户认证阶段期间进行纠错,其中如果所述误差容限等级为零,则不计算所述误差校正向量; 并将变化矢量,差分矢量和误差校正矢量存储为用户认证阶段期间要使用的用户参考数据的一部分。
    • 7. 发明授权
    • Anomaly detection for packet-based networks
    • 基于分组的网络异常检测
    • US09094444B2
    • 2015-07-28
    • US13143062
    • 2008-12-31
    • Madalina BaltatuPaolo Abeni
    • Madalina BaltatuPaolo Abeni
    • H04L12/26H04L29/06
    • H04L63/1425H04L43/00
    • Disclosed herein is an anomaly detection method for a packet-based network which includes several network resources, also called network-related software objects. The method includes monitoring the network resources of the packet-based network, ordering the monitored network resources according to a given ordering criterion, and detecting an anomaly in the packet-based network based on the ordered network resources. In particular, detecting an anomaly includes forming a detection feature vector based on the ordered network resources, and feeding the detection feature vector to a machine learning system configured to detect an anomaly in the packet-based network based on the detection feature vector. The detection feature vector includes detection feature items related to corresponding monitored network resources, and arranged in the detection feature vector depending on the ordering of the corresponding monitored network resources. Conveniently, the machine learning system is a one-class classifier, preferably a one-class Support Vector Machine (OC-SVM).
    • 本文公开了一种用于基于分组的网络的异常检测方法,其包括若干网络资源,也称为网络相关软件对象。 该方法包括监视基于分组的网络的网络资源,根据给定的排序标准对监控的网络资源进行排序,并基于有序的网络资源检测基于分组的网络中的异常。 特别地,检测异常包括基于有序网络资源形成检测特征向量,并且将检测特征向量馈送到被配置为基于检测特征向量来检测基于分组的网络中的异常的机器学习系统。 检测特征向量包括与对应的被监视的网络资源相关的检测特征项,并根据对应的被监视的网络资源的顺序排列在检测特征向量中。 方便的是,机器学习系统是一类分类器,最好是一类支持向量机(OC-SVM)。
    • 8. 发明授权
    • Method and system for biometric authentication and encryption
    • 用于生物识别和加密的方法和系统
    • US08312291B2
    • 2012-11-13
    • US12448596
    • 2006-12-28
    • Jovan GolicMadalina Baltatu
    • Jovan GolicMadalina Baltatu
    • G06F21/00
    • H04L9/0866G06K9/00288G07C9/00158H04L9/3231H04L2209/08H04L2209/34
    • A biometric user authentication method, includes enrolling a user based on user's biometric samples to generate user's reference data; and authenticating the user based on a user's live biometric sample and the user's reference data; wherein enrolling a user includes acquiring the user's biometric samples; extracting an enrollment feature vector from each user's biometric sample; computing a biometric reference template vector as a mean vector based on the enrollment feature vectors; computing a variation vector based on the enrollment feature vectors and the mean vector; randomly generating an enrollment secret vector; computing an enrollment code vector based on the enrollment secret vector and the variation vector; computing a difference vector as a wrap-around difference between the enrollment code vector and the mean vector; computing an error correction vector based on the enrollment secret vector to enable error correction during the user authentication phase according to a given error tolerance level, wherein the error correction vector is not computed if the error tolerance level is equal to zero; and storing the variation vector, the difference vector, and the error correction vector as a part of the user's reference data to be used during the user authentication phase.
    • 一种生物识别用户认证方法,包括基于用户的生物测定样本登记用户以产生用户参考数据; 以及基于用户的实时生物特征样本和用户的参考数据来认证用户; 其中登记用户包括获取所述用户的生物特征样本; 从每个用户的生物特征样本中提取注册特征向量; 基于所述登记特征向量计算生物特征参考模板向量作为平均向量; 基于注册特征向量和平均向量计算变量向量; 随机生成登记秘密向量; 基于登记秘密向量和变化向量计算登记码矢量; 计算差分矢量作为注册码矢量和平均矢量之间的环绕差; 基于所述登记秘密向量计算误差校正向量,以根据给定的误差容限级别在所述用户认证阶段期间进行纠错,其中如果所述误差容限等级为零,则不计算所述误差校正向量; 并将变化矢量,差分矢量和误差校正矢量存储为用户认证阶段期间要使用的用户参考数据的一部分。
    • 9. 发明授权
    • Anomaly detection for link-state routing protocols
    • 链路状态路由协议异常检测
    • US08626678B2
    • 2014-01-07
    • US12811048
    • 2007-12-28
    • Madalina BaltatuSebastiano Di PaolaDario Lombardo
    • Madalina BaltatuSebastiano Di PaolaDario Lombardo
    • G06F15/18
    • H04L63/1425G06K9/6284H04L45/02
    • Disclosed herein is an anomaly detection method for link-state routing protocols, a link-state routing protocol providing for link-state update (LSU) messages to be exchanged between nodes in a packet-based network, wherein each link-state update message includes link-state advertisement (LSA) message(s) each having a respective header. The method comprises monitoring the link-state advertisement messages exchanged in the network, extracting and forming respective feature vectors with the values in the fields of the headers of the monitored link-state advertisement messages, and detecting an anomaly related to routing based on the feature vectors. In particular, detecting an anomaly related to routing includes feeding the feature vectors to a machine learning system, conveniently a one-class classifier, preferably a one-class support vector machine (OC-SVM).
    • 本文公开了一种用于链路状态路由协议的异常检测方法,提供要在基于分组的网络中的节点之间交换的链路状态更新(LSU)消息的链路状态路由协议,其中每个链路状态更新消息包括 链路状态广播(LSA)消息,每个消息具有相应的报头。 该方法包括监视在网络中交换的链路状态通告消息,提取和形成各个特征向量,其中所述被监控链路状态通告消息的报头的字段中的值,以及基于特征检测与路由有关的异常 向量 特别地,检测与路由相关的异常包括将特征向量馈送到机器学习系统,方便地是一类分类器,优选地是一类支持向量机(OC-SVM)。
    • 10. 发明申请
    • ANOMALY DETECTION FOR PACKET-BASED NETWORKS
    • 基于分组网络的异常检测
    • US20110267964A1
    • 2011-11-03
    • US13143062
    • 2008-12-31
    • Madalina BaltatuPaolo Abeni
    • Madalina BaltatuPaolo Abeni
    • H04L12/26
    • H04L63/1425H04L43/00
    • Disclosed herein is an anomaly detection method for a packet-based network which includes several network resources, also called network-related software objects. The method includes monitoring the network resources of the packet-based network, ordering the monitored network resources according to a given ordering criterion, and detecting an anomaly in the packet-based network based on the ordered network resources. In particular, detecting an anomaly includes forming a detection feature vector based on the ordered network resources, and feeding the detection feature vector to a machine learning system configured to detect an anomaly in the packet-based network based on the detection feature vector. The detection feature vector includes detection feature items related to corresponding monitored network resources, and arranged in the detection feature vector depending on the ordering of the corresponding monitored network resources. Conveniently, the machine learning system is a one-class classifier, preferably a one-class Support Vector Machine (OC-SVM).
    • 本文公开了一种用于基于分组的网络的异常检测方法,其包括若干网络资源,也称为网络相关软件对象。 该方法包括监视基于分组的网络的网络资源,根据给定的排序标准对监控的网络资源进行排序,并基于有序的网络资源检测基于分组的网络中的异常。 特别地,检测异常包括基于有序网络资源形成检测特征向量,并且将检测特征向量馈送到被配置为基于检测特征向量来检测基于分组的网络中的异常的机器学习系统。 检测特征向量包括与对应的被监视的网络资源相关的检测特征项,并根据对应的被监视的网络资源的顺序排列在检测特征向量中。 方便的是,机器学习系统是一类分类器,最好是一类支持向量机(OC-SVM)。