会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • Processing data using sequential dependencies
    • 使用顺序依赖来处理数据
    • US20110131170A1
    • 2011-06-02
    • US12592586
    • 2009-11-30
    • Lukasz GolabHoward KarloffPhilip KornDivesh SrivastavaAvishek Saha
    • Lukasz GolabHoward KarloffPhilip KornDivesh SrivastavaAvishek Saha
    • G06N5/02
    • G06N7/00G06N5/00
    • The specification describes data processes for analyzing large data steams for target anomalies. “Sequential dependencies” (SDs) are chosen for ordered data and present a framework for discovering which subsets of the data obey a given sequential dependency. Given an interval G, an SD on attributes X and Y, written as X→G Y, denotes that the distance between the Y-values of any two consecutive records, when sorted on X, are within G. SDs may be extended to Conditional Sequential Dependencies (CSDs), consisting of an underlying SD plus a representation of the subsets of the data that satisfy the SD. The conditional approximate sequential dependencies may be expressed as pattern tableaux, i.e., compact representations of the subsets of the data that satisfy the underlying dependency.
    • 该规范描述了用于分析目标异常的大型数据流的数据处理。 为有序数据选择“顺序依赖”(SDs),并提供一个框架,用于发现数据的哪些子集服从给定的顺序依赖。 给定间隔G,写入X→GY的属性X和Y上的SD表示当在X上排序时任何两个连续记录的Y值之间的距离在G内。可以扩展到条件序列 依赖关系(CSDs)由基础SD加上满足SD的数据子集的表示组成。 条件近似顺序依赖性可以表示为模式表,即满足基础依赖性的数据子集的紧凑表示。
    • 8. 发明授权
    • Methods and apparatus to determine statistical dominance point descriptors for multidimensional data
    • 确定多维数据统计优势点描述符的方法和装置
    • US08160837B2
    • 2012-04-17
    • US12334252
    • 2008-12-12
    • Graham CormodePhilip KornDivesh Srivastava
    • Graham CormodePhilip KornDivesh Srivastava
    • G06F17/18
    • G06F17/18Y10S707/99932Y10S707/99948
    • Methods and apparatus to determine statistical dominance point descriptors for multidimensional data are disclosed. An example method disclosed herein comprises determining a first joint dominance value for a first data point in a multidimensional data set, data points in the multidimensional data set comprising multidimensional values, each dimension corresponding to a different measurement of a physical event, the first joint dominance value corresponding to a number of data points in the multidimensional data set dominated by the first data point in every dimension, determining a first skewness value for the first data point, the first skewness value corresponding to a size of a first dimension of the first data point relative to a combined size of all dimensions of the first data point, and combining the first joint dominance and first skewness values to determine a first statistical dominance point descriptor associated with the first data point.
    • 公开了确定多维数据的统计优势点描述符的方法和装置。 本文公开的示例性方法包括确定多维数据集中的第一数据点的第一联合优势值,所述多维数据集中的数据点包括多维值,每个维度对应于物理事件的不同测量,第一联合优势 对应于由每个维度中的第一数据点主导的多维数据集中的多个数据点的数值,确定第一数据点的第一偏差值,第一偏差值对应于第一数据的第一维度的大小 相对于第一数据点的所有维度的组合尺寸,以及组合第一联合优势和第一偏移值以确定与第一数据点相关联的第一统计优势点描述符。
    • 10. 发明申请
    • Methods and Apparatus to Determine Statistical Dominance Point Descriptors for Multidimensional Data
    • 确定多维数据的统计优势点描述符的方法和装置
    • US20100153064A1
    • 2010-06-17
    • US12334252
    • 2008-12-12
    • Graham CormodePhilip KornDivesh Srivastava
    • Graham CormodePhilip KornDivesh Srivastava
    • G06F17/18G06F17/30G06F15/173
    • G06F17/18Y10S707/99932Y10S707/99948
    • Methods and apparatus to determine statistical dominance point descriptors for multidimensional data are disclosed. An example method disclosed herein comprises determining a first joint dominance value for a first data point in a multidimensional data set, data points in the multidimensional data set comprising multidimensional values, each dimension corresponding to a different measurement of a physical event, the first joint dominance value corresponding to a number of data points in the multidimensional data set dominated by the first data point in every dimension, determining a first skewness value for the first data point, the first skewness value corresponding to a size of a first dimension of the first data point relative to a combined size of all dimensions of the first data point, and combining the first joint dominance and first skewness values to determine a first statistical dominance point descriptor associated with the first data point.
    • 公开了确定多维数据的统计优势点描述符的方法和装置。 本文公开的示例性方法包括确定多维数据集中的第一数据点的第一联合优势值,所述多维数据集中的数据点包括多维值,每个维度对应于物理事件的不同测量,第一联合优势 对应于由每个维度中的第一数据点主导的多维数据集中的多个数据点的数值,确定第一数据点的第一偏差值,第一偏差值对应于第一数据的第一维度的大小 相对于第一数据点的所有维度的组合尺寸,以及组合第一联合优势和第一偏移值以确定与第一数据点相关联的第一统计优势点描述符。