会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • METHOD AND STRUCTURE FOR ION IMPLANTATION BY ION SCATTERING
    • 离子散射的离子注入方法和结构
    • US20060234484A1
    • 2006-10-19
    • US10907752
    • 2005-04-14
    • Louis LanzerottiDavid SheridanSteven Voldman
    • Louis LanzerottiDavid SheridanSteven Voldman
    • H01L21/22H01L21/38
    • H01L21/266H01L27/0259H01L29/66242H01L29/7378
    • A scatter-implant process and device is provided where a bi-level doping pattern is achieved in a single doping step. Additionally, devices having different breakdown voltages can be produced in a single implant process. The scatter-implant is fabricated by scattering implant ions off the edge of a mask, thereby reducing the ion energy causing the ions to doping shallower regions than the non-scattered ions which dope a lower region. By adjusting various parameters of the doping process such as, for example, ion type, ion energy, mask type and geometry, in a position of scattering edge relative to other structure of the device, the scatter-implant can be tuned to achieve certain properties of the semiconductor device. Additionally, circuits can be made using the scatter-implant process where pre-selected portion of the circuit incorporate the scatter-implant region and other portions of the circuit do not rely on the scatter region.
    • 提供散射注入工艺和器件,其中在单个掺杂步骤中实现双电平掺杂图案。 另外,具有不同击穿电压的器件可以在单个注入工艺中产生。 散射注入是通过将注入离子从掩模的边缘散射而制造的,从而减少了离子掺杂比掺杂较低区域的非散射离子更浅的区域的离子能。 通过调整掺杂过程的各种参数,例如离子类型,离子能量,掩模类型和几何形状,在相对于器件的其他结构的散射边缘的位置,可以调整散射植入物以实现某些特性 的半导体器件。 另外,可以使用散射注入工艺制造电路,其中电路的预选部分包含散射注入区域,并且电路的其它部分不依赖于散射区域。
    • 4. 发明申请
    • Silicon germanium heterojunction bipolar transistor with carbon incorporation
    • 具有碳掺入的硅锗异质结双极晶体管
    • US20050051798A1
    • 2005-03-10
    • US10660048
    • 2003-09-11
    • Louis LanzerottiBrian RonanSteven Voldman
    • Louis LanzerottiBrian RonanSteven Voldman
    • H01H85/47H01L21/328H01L21/331H01L29/737H01L31/0328
    • H01L29/66242H01H85/47H01L29/7378
    • A silicon germanium heterojunction bipolar transistor device and method comprises a semiconductor region, and a diffusion region in the semiconductor region, wherein the diffusion region is boron-doped, wherein the semiconductor region comprises a carbon dopant therein to minimize boron diffusion, and wherein a combination of an amount of the dopant, an amount of the boron, and a size of the semiconductor region are such that the diffusion region has a sheet resistance of less than approximately 4 Kohms/cm2. Also, the diffusion region is boron-doped at a concentration of 1×1020/cm3 to 1×1021/cm3. Additionally, the semiconductor region comprises 5-25% germanium and 0-3% carbon. By adding carbon to the semiconductor region, the device achieves an electrostatic discharge robustness, which further causes a tighter distribution of a power-to-failure of the device, and increases a critical thickness and reduces the thermal strain of the semiconductor region.
    • 硅锗异质结双极晶体管器件和方法包括半导体区域和半导体区域中的扩散区域,其中扩散区域是硼掺杂的,其中半导体区域包括其中的碳掺杂剂以最小化硼扩散,并且其中组合 的掺杂剂的量,硼的量和半导体区域的尺寸使得扩散区域具有小于约4Kohms / cm 2的薄层电阻。 此外,扩散区域以1×10 20 / cm 3至1×10 21 / cm 3的浓度进行硼掺杂。 另外,半导体区域包括5-25%的锗和0-3%的碳。 通过向半导体区域添加碳,该器件实现了静电放电鲁棒性,这进一步导致器件的功率故障分布更严格,并且增加了临界厚度并降低了半导体区域的热应变。
    • 5. 发明申请
    • Silicon germanium heterojunction bipolar transistor with carbon incorporation
    • 具有碳掺入的硅锗异质结双极晶体管
    • US20050233534A1
    • 2005-10-20
    • US11121454
    • 2005-05-04
    • Louis LanzerottiBrian RonanSteven Voldman
    • Louis LanzerottiBrian RonanSteven Voldman
    • H01H85/47H01L21/328H01L21/331H01L29/737
    • H01L29/66242H01H85/47H01L29/7378
    • A silicon germanium heterojunction bipolar transistor device and method comprises a semiconductor region, and a diffusion region in the semiconductor region, wherein the diffusion region is boron-doped, wherein the semiconductor region comprises a carbon dopant therein to minimize boron diffusion, and wherein a combination of an amount of the dopant, an amount of the boron, and a size of the semiconductor region are such that the diffusion region has a sheet resistance of less than approximately 4 Kohms/cm2. Also, the diffusion region is boron-doped at a concentration of 1×1020/cm3 to 1×1021/cm3. Additionally, the semiconductor region comprises 5-25% germanium and 0-3% carbon. By adding carbon to the semiconductor region, the device achieves an electrostatic discharge robustness, which further causes a tighter distribution of a power-to-failure of the device, and increases a critical thickness and reduces the thermal strain of the semiconductor region.
    • 硅锗异质结双极晶体管器件和方法包括半导体区域和半导体区域中的扩散区域,其中扩散区域是硼掺杂的,其中半导体区域包括其中的碳掺杂剂以最小化硼扩散,并且其中组合 的掺杂剂的量,硼的量和半导体区域的尺寸使得扩散区域具有小于约4Kohms / cm 2的薄层电阻。 此外,扩散区域以1×10 20 / cm 3至1×10 21 / cm 3的浓度硼掺杂, SUP>。 另外,半导体区域包括5-25%的锗和0-3%的碳。 通过向半导体区域添加碳,该器件实现了静电放电鲁棒性,这进一步导致器件的功率故障分布更严格,并且增加了临界厚度并降低了半导体区域的热应变。
    • 9. 发明申请
    • SEMICONDUCTOR DEVICES
    • 半导体器件
    • US20080036029A1
    • 2008-02-14
    • US11870567
    • 2007-10-11
    • Xuefeng LIURober RasselSteven Voldman
    • Xuefeng LIURober RasselSteven Voldman
    • H01L29/00
    • H01L29/7436H01L27/0262H01L29/7378
    • A design structure embodied in a machine readable medium used in a design process. The design structure includes a first sub-collector formed in an upper portion of a substrate and a lower portion of a first epitaxial layer, and a second sub-collector formed in an upper portion of the first epitaxial layer and a lower portion of a second epitaxial layer. The design structure additionally includes a reach-through structure connecting the first and second sub-collectors, and an N-well formed in a portion of the second epitaxial layer and in contact with the second sub-collector and the reach-through structure. Also, the design structure includes N+ diffusion regions in contact with the N-well, a P+ diffusion region within the N-well, and shallow trench isolation structures between the N+ and P+ diffusion regions.
    • 在设计过程中使用的机器可读介质中体现的设计结构。 该设计结构包括形成在衬底的上部和第一外延层的下部的第一子集电极和形成在第一外延层的上部中的第二子集电极, 外延层。 该设计结构还包括连接第一和第二子集电器的通孔结构以及形成在第二外延层的一部分中并与第二子集电极和达到通孔结构接触的N阱。 此外,设计结构包括与N阱接触的N +扩散区域,N阱内的P +扩散区域和N +和P +扩散区域之间的浅沟槽隔离结构。