会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Time synchronous decoding for long-span hidden trajectory model
    • 长跨隐藏轨迹模型的时间同步解码
    • US07877256B2
    • 2011-01-25
    • US11356905
    • 2006-02-17
    • Xiaolong LiLi DengDong YuAlejandro Acero
    • Xiaolong LiLi DengDong YuAlejandro Acero
    • G10L15/14
    • G10L15/08
    • A time-synchronous lattice-constrained search algorithm is developed and used to process a linguistic model of speech that has a long-contextual-span capability. In the algorithm, hypotheses are represented as traces that include an indication of a current frame, previous frames and future frames. Each frame can include an associated linguistic unit such as a phone or units that are derived from a phone. Additionally, pruning strategies can be applied to speed up the search. Further, word-ending recombination methods are developed to speed up the computation. These methods can effectively deal with an exponentially increased search space.
    • 开发了一种时间同步的格格约束搜索算法,用于处理具有长语境跨度能力的语言语言模型。 在算法中,假设被表示为包括当前帧,先前帧和未来帧的指示的迹线。 每个帧可以包括相关联的语言单元,例如从电话派生的电话或单元。 此外,可以应用修剪策略来加快搜索速度。 此外,开发了文字重组方法以加速计算。 这些方法可以有效地处理指数级增加的搜索空间。
    • 7. 发明申请
    • Automatic reading tutoring with parallel polarized language modeling
    • 使用平行极化语言建模的自动阅读辅导
    • US20080177545A1
    • 2008-07-24
    • US11655702
    • 2007-01-19
    • Xiaolong LiYun-Cheng JuLi DengAlejandro Acero
    • Xiaolong LiYun-Cheng JuLi DengAlejandro Acero
    • G10L15/28
    • G06F17/271G09B17/003G10L15/197G10L2015/221
    • A novel system for automatic reading tutoring provides effective error detection and reduced false alarms combined with low processing time burdens and response times short enough to maintain a natural, engaging flow of interaction. According to one illustrative embodiment, an automatic reading tutoring method includes displaying a text output and receiving an acoustic input. The acoustic input is modeled with a domain-specific target language model specific to the text output, and with a general-domain garbage language model, both of which may be efficiently constructed as context-free grammars. The domain-specific target language model may be built dynamically or “on-the-fly” based on the currently displayed text (e.g. the story to be read by the user), while the general-domain garbage language model is shared among all different text outputs. User-perceptible tutoring feedback is provided based on the target language model and the garbage language model.
    • 用于自动阅读辅导的新颖系统提供了有效的错误检测和减少的假警报以及较短的处理时间负担和响应时间足够短以保持自然的,互动的互动流。 根据一个说明性实施例,自动阅读辅导方法包括显示文本输出并接收声输入。 声输入是用专门针对文本输出的领域特定的目标语言模型建立的,并且具有通用域垃圾语言模型,这两种语言模型都可以被有效地构建为无上下文的语法。 可以基于当前显示的文本(例如,用户要阅读的故事)动态地或“即时”地构建特定领域的目标语言模型,而一般域垃圾语言模型在所有不同的方式之间共享 文本输出。 基于目标语言模型和垃圾语言模型提供了用户可感知的辅导反馈。
    • 8. 发明授权
    • Automatic reading tutoring with parallel polarized language modeling
    • 使用平行极化语言建模的自动阅读辅导
    • US08433576B2
    • 2013-04-30
    • US11655702
    • 2007-01-19
    • Xiaolong LiYun-Cheng JuLi DengAlejandro Acero
    • Xiaolong LiYun-Cheng JuLi DengAlejandro Acero
    • G10L15/22
    • G06F17/271G09B17/003G10L15/197G10L2015/221
    • A novel system for automatic reading tutoring provides effective error detection and reduced false alarms combined with low processing time burdens and response times short enough to maintain a natural, engaging flow of interaction. According to one illustrative embodiment, an automatic reading tutoring method includes displaying a text output and receiving an acoustic input. The acoustic input is modeled with a domain-specific target language model specific to the text output, and with a general-domain garbage language model, both of which may be efficiently constructed as context-free grammars. The domain-specific target language model may be built dynamically or “on-the-fly” based on the currently displayed text (e.g. the story to be read by the user), while the general-domain garbage language model is shared among all different text outputs. User-perceptible tutoring feedback is provided based on the target language model and the garbage language model.
    • 用于自动阅读辅导的新颖系统提供了有效的错误检测和减少的假警报以及较短的处理时间负担和响应时间足够短以保持自然的,互动的互动流。 根据一个说明性实施例,自动阅读辅导方法包括显示文本输出并接收声输入。 声输入是用专门针对文本输出的领域特定的目标语言模型建立的,并且具有通用域垃圾语言模型,这两种语言模型都可以被有效地构建为无上下文的语法。 可以基于当前显示的文本(例如,用户要阅读的故事)动态地或“即时”地构建特定领域的目标语言模型,而一般域垃圾语言模型在所有不同的方式之间共享 文本输出。 基于目标语言模型和垃圾语言模型提供了用户可感知的辅导反馈。