会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Device position estimates from motion and ambient light classifiers
    • 来自运动和环境光分类器的装置位置估计
    • US09366749B2
    • 2016-06-14
    • US13348497
    • 2012-01-11
    • Leonard Henry GrokopVidya Narayanan
    • Leonard Henry GrokopVidya Narayanan
    • G06F15/00G01C19/00G01S5/16G01C21/16G06F1/16H04M1/725G01C19/34G01C19/44
    • G01S5/16G01C19/34G01C19/44G01C21/165G06F1/1686G06F1/1694H04M1/72522
    • A position estimate for a mobile device is generated using data from motion sensors, such as accelerometers, magnetometers, and/or gyroscopes, and data from light sensors, such as an ambient light sensor, proximity sensor and/or camera intensity sensor. A plurality of proposed positions with associated likelihoods is generated by analyzing information from the motion sensors and a list of candidate positions is produced based on information from the light sensors. At least one of the plurality of proposed positions is eliminated using the list of candidate positions and a position estimate for the mobile device is determined based on the remaining proposed positions and associated likelihoods. The proposed positions may be generated by extracting features from the information from the motion sensors and using models to generate likelihoods for the proposed positions. The likelihoods may be filtered over time. Additionally, a confidence metric may be generated for the estimated position.
    • 使用来自诸如加速度计,磁力计和/或陀螺仪的运动传感器的数据以及来自诸如环境光传感器,接近传感器和/或照相机强度传感器的光传感器的数据来生成移动设备的位置估计。 通过分析来自运动传感器的信息来产生具有相关似然性的多个提出的位置,并且基于来自光传感器的信息产生候选位置的列表。 使用候选位置的列表来消除多个提出的位置中的至少一个,并且基于剩余的建议位置和相关联的可能性来确定移动设备的位置估计。 可以通过从运动传感器的信息中提取特征并使用模型来产生所提出的位置的可能性来产生所提出的位置。 可能性可能会随时间过滤。 另外,可以为估计位置生成置信度量度。
    • 8. 发明申请
    • LEARNING SPEECH MODELS FOR MOBILE DEVICE USERS
    • 学习移动设备用户的语音模型
    • US20130006633A1
    • 2013-01-03
    • US13344026
    • 2012-01-05
    • Leonard Henry GrokopVidya Narayanan
    • Leonard Henry GrokopVidya Narayanan
    • G10L15/06
    • G10L15/063G06N7/005G10L2015/0631
    • Techniques are provided to recognize a speaker's voice. In one embodiment, received audio data may be separated into a plurality of signals. For each signal, the signal may be associated with value/s for one or more features (e.g., Mel-Frequency Cepstral coefficients). The received data may be clustered (e.g., by clustering features associated with the signals). A predominate voice cluster may be identified and associated with a user. A speech model (e.g., a Gaussian Mixture Model or Hidden Markov Model) may be trained based on data associated with the predominate cluster. A received audio signal may then be processed using the speech model to, e.g.: determine who was speaking; determine whether the user was speaking; determining whether anyone was speaking; and/or determine what words were said. A context of the device or the user may then be inferred based at least partly on the processed signal.
    • 提供技术来识别扬声器的声音。 在一个实施例中,所接收的音频数据可以被分成多个信号。 对于每个信号,信号可以与一个或多个特征(例如,梅尔频率倒频谱系数)的值/ s相关联。 接收到的数据可以被聚类(例如,通过聚集与信号相关联的特征)。 可以识别主要的语音群集并且与用户相关联。 可以基于与主要簇相关联的数据来训练语音模型(例如,高斯混合模型或隐马尔可夫模型)。 然后可以使用语音模型来处理接收到的音频信号,例如:确定谁在说话; 确定用户是否在说话; 确定是否有人在说话; 和/或确定说什么话。 可以至少部分地基于经处理的信号来推断设备或用户的上下文。
    • 9. 发明申请
    • DEVICE POSITION ESTIMATES FROM MOTION AND AMBIENT LIGHT CLASSIFIERS
    • 设备位置从运动和环境光分类器估计
    • US20120265482A1
    • 2012-10-18
    • US13348497
    • 2012-01-11
    • Leonard Henry GrokopVidya Narayanan
    • Leonard Henry GrokopVidya Narayanan
    • G06F15/00
    • G01S5/16G01C19/34G01C19/44G01C21/165G06F1/1686G06F1/1694H04M1/72522
    • A position estimate for a mobile device is generated using data from motion sensors, such as accelerometers, magnetometers, and/or gyroscopes, and data from light sensors, such as an ambient light sensor, proximity sensor and/or camera intensity sensor. A plurality of proposed positions with associated likelihoods is generated by analyzing information from the motion sensors and a list of candidate positions is produced based on information from the light sensors. At least one of the plurality of proposed positions is eliminated using the list of candidate positions and a position estimate for the mobile device is determined based on the remaining proposed positions and associated likelihoods. The proposed positions may be generated by extracting features from the information from the motion sensors and using models to generate likelihoods for the proposed positions. The likelihoods may be filtered over time. Additionally, a confidence metric may be generated for the estimated position.
    • 使用来自诸如加速度计,磁力计和/或陀螺仪的运动传感器的数据以及来自诸如环境光传感器,接近传感器和/或照相机强度传感器的光传感器的数据来生成移动设备的位置估计。 通过分析来自运动传感器的信息来产生具有相关似然性的多个提出的位置,并且基于来自光传感器的信息产生候选位置的列表。 使用候选位置的列表来消除多个提出的位置中的至少一个,并且基于剩余的建议位置和相关联的可能性来确定移动设备的位置估计。 可以通过从运动传感器的信息中提取特征并使用模型来产生所提出的位置的可能性来产生所提出的位置。 可能性可能会随时间过滤。 另外,可以为估计位置生成置信度量度。
    • 10. 发明授权
    • Systems, methods, and apparatuses for classifying user activity using temporal combining in a mobile device
    • 用于在移动设备中使用时间组合分类用户活动的系统,方法和装置
    • US08930300B2
    • 2015-01-06
    • US13362893
    • 2012-01-31
    • Leonard Henry GrokopAnthony SarahSanjiv Nanda
    • Leonard Henry GrokopAnthony SarahSanjiv Nanda
    • A61B5/11G06K9/00G06K9/62G06N7/00
    • A61B5/1123G06K9/00348G06K9/00536G06K9/6288G06N7/00G06N7/005
    • Components, methods, and apparatuses are provided for determining activity likelihood function values for an activity classification for two or more past epochs based, at least in part, on signals from one or more sensors of a mobile device. A method may comprise, for each of a plurality of activity classifications, determining activity likelihood function values for each of the plurality of activity classifications for two or more past epochs. The activity likelihood function values may be based on signals from one or more sensors of a mobile device. The method may also include combining the activity likelihood function values to determine a likelihood function for an activity classification at a present epoch. The method may also include inferring a present activity of a user co-located with the mobile device to be one of the activity classifications based on the determined likelihood functions for the activity classifications at the present epoch.
    • 提供了组件,方法和装置,用于至少部分地基于来自移动设备的一个或多个传感器的信号来确定用于两个或多个过去时期的活动分类的活动似然函数值。 对于多个活动分类中的每一个,方法可以包括针对两个或多个过去时期的多个活动分类中的每一个确定活动似然函数值。 活动似然函数值可以基于来自移动设备的一个或多个传感器的信号。 该方法还可以包括组合活动似然函数值以确定在当前时期的活动分类的似然函数。 该方法还可以包括基于所确定的当前时期的活动分类的似然函数,将与移动设备共存的用户的当前活动推断为活动分类之一。