会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Modular multiplication acceleration circuit and method for data encryption/decryption
    • 模块化乘法加速电路和数据加密/解密方法
    • US07693926B2
    • 2010-04-06
    • US11393392
    • 2006-03-30
    • Sanu MathewRam KrishnamurthyZheng Guo
    • Sanu MathewRam KrishnamurthyZheng Guo
    • G06F7/38
    • G06F7/728G06F7/722
    • A system to process multiplier X and multiplicand Y may include multiplication of a least-significant bit of X and a least-significant w bits of Y to generate a least-significant w bits of product Z. The system may further include determination of whether a least-significant bit of product Z is 1, addition of a least-significant w bits of modulus M to the least-significant w bits of product Z if the least-significant bit of product Z is 1, multiplication of the least-significant bit of X and bits 2w-1:w of Y to generate bits 2w-1:w of product Z, and addition of bits 2w-1:w of modulus M to bits 2w-1:w of product Z if the least-significant bit of product Z is 1. Multiplying the least-significant bit of X and bits 2w-1:w of Y may occur at least partially contemporaneously with multiplying the least-significant bit of X and the least-significant w bits of Y, determining if the least-significant bit of product Z is 1, and adding the least-significant w bits of modulus M to the least-significant w bits of product Z if the least-significant bit of product Z is 1.
    • 处理乘法器X和被乘数Y的系统可以包括X的最低有效位和Y的最低有效位W的乘法以产生乘积Z的最低有效w位。系统还可以包括确定是否 如果产品Z的最低有效位为1,乘积Z的最低有效位为1,则将乘积Z的最低有效位加上最低有效W位的模M, 的X和位2w-1:w,以产生乘积Z的位2w-1:w,并将模数M的位2w-1:w加到乘积Z的位2w-1:w,如果最不重要 乘积Z为1.乘以X的最低有效位和Y的位2w-1:w可以至少部分同时与X的最低有效位和Y的最低有效位相乘,从而确定 如果乘积Z的最低有效位为1,并将模数M的最低有效位W加到最小值 如果产品Z的最低有效位为1,则不能产生Z位。
    • 3. 发明申请
    • FINFET-BASED SRAM WITH FEEDBACK
    • 具有反馈功能的基于FINFET的SRAM
    • US20070183185A1
    • 2007-08-09
    • US11622305
    • 2007-01-11
    • Zheng GuoSriram BalasubramanianRadu ZlatanoviciTsu-Jae KingBorivoje Nikolic
    • Zheng GuoSriram BalasubramanianRadu ZlatanoviciTsu-Jae KingBorivoje Nikolic
    • G11C11/00
    • G11C11/412H01L27/11H01L27/1104H01L27/1108H01L29/785
    • Intrinsic variations and challenging leakage control in current bulk-Si MOSFETs force undesired tradeoffs to be made and limit the scaling of SRAM circuits. Circuits and mechanisms are taught herein which improve leakage and noise margin in SRAM cells, such as those comprising either six-transistor (6-T) SRAM cell designs, or four-transistor (4-T) SRAM cell designs. The inventive SRAM cells utilize a feedback means coupling a portion of the storage node to a back-gate of an access transistor. Preferably feedback is coupled in this manner to both access transistors. SRAM cells designed with this built-in feedback achieve significant improvements in cell static noise margin (SNM) without area penalty. Use of the feedback scheme also results in the creation of a practical 4-T FinFET-based SRAM cell that achieves sub-100 pA per-cell standby current and offers similar improvements in SNM as the 6-T cell with feedback.
    • 当前体硅Si MOSFET中的固有变化和具有挑战性的泄漏控制迫使不需要的折衷,并限制了SRAM电路的缩放。 本文教导了改善SRAM单元中的泄漏和噪声容限的电路和机构,例如包括六晶体管(6-T)SRAM单元设计或四晶体管(4-T)SRAM单元设计)的那些。 本发明的SRAM单元利用将存储节点的一部分耦合到存取晶体管的后栅极的反馈装置。 反馈优选以这种方式耦合到两个存取晶体管。 使用这种内置反馈设计的SRAM单元实现了细胞静态噪声容限(SNM)的显着改进,无区域损失。 反馈方案的使用还导致创建了实用的基于4-T FinFET的SRAM单元,其实现了每个100pA的每个电池的待机电流,并且具有与具有反馈的6-T电池相似的SNM改进。
    • 4. 发明申请
    • Modular multiplication acceleration circuit and method for data encryption/decryption
    • 模块化乘法加速电路和数据加密/解密方法
    • US20070233772A1
    • 2007-10-04
    • US11393392
    • 2006-03-30
    • Sanu MathewRam KrishnamurthyZheng Guo
    • Sanu MathewRam KrishnamurthyZheng Guo
    • G06F7/52
    • G06F7/728G06F7/722
    • A system to process multiplier X and multiplicand Y may include multiplication of a least-significant bit of X and a least-significant w bits of Y to generate a least-significant w bits of product Z. The system may further include determination of whether a least-significant bit of product Z is 1, addition of a least-significant w bits of modulus M to the least-significant w bits of product Z if the least-significant bit of product Z is 1, multiplication of the least-significant bit of X and bits 2w-1:w of Y to generate bits 2w-1:w of product Z, and addition of bits 2w-1:w of modulus M to bits 2w-1:w of product Z if the least-significant bit of product Z is 1. Multiplying the least-significant bit of X and bits 2w-1:w of Y may occur at least partially contemporaneously with multiplying the least-significant bit of X and the least-significant w bits of Y, determining if the least-significant bit of product Z is 1, and adding the least-significant w bits of modulus M to the least-significant w bits of product Z if the least-significant bit of product Z is 1.
    • 处理乘法器X和被乘数Y的系统可以包括X的最低有效位和Y的最低有效位W的乘法以产生乘积Z的最低有效w位。系统还可以包括确定是否 如果产品Z的最低有效位为1,乘积Z的最低有效位为1,则将乘积Z的最低有效位加上最低有效W位的模M, 并且产生Z的位2 w-1:w,并将模数M的位2 w-1:w相加到乘积Z的位2 w-1:w,如果 乘积Z的最低有效位为1.乘以X的最低有效位和Y的位2 w-1:w可以至少部分同时与X的最低有效位乘以最小有效位W 确定产品Z的最低有效位是否为1,并将模数M的最低有效W位加到第 如果产品Z的最低有效位为1,则产品Z的最低有效w位。