会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Access control system and method therefor
    • 具有防欺诈功能的电信设备
    • US06243695B1
    • 2001-06-05
    • US09045361
    • 1998-03-18
    • Khaled AssalehWilliam Michael Campbell
    • Khaled AssalehWilliam Michael Campbell
    • G06F1518
    • G06K9/68
    • A TCS (200) and procedure (400) for identifying an unidentified class as a class of a group of classes includes a new tree-structured classifier (208) and training processor (204). Unidentified feature vectors representing an unidentified class are combined with predetermined models to compute a score for each of the unidentified feature vectors. Based on the scores for each of the unidentified feature vectors, an association is made with the predetermined models to identify the unidentified class. Predetermined models are created using a training procedure (300) for predetermined feature vectors associated therewith. A procedure (400) for identifying an unidentified class as a class of a group of classes is useful when determining access privileges to a device or system.
    • 用于将未识别的类识别为类的一类的TCS(200)和过程(400)包括新的树结构分类器(208)和训练处理器(204)。 表示未识别类别的不明特征向量与预定模型组合以计算每个未识别特征向量的得分。 基于每个未识别特征向量的分数,使用预定模型进行关联以识别未识别的类。 使用用于与其相关联的预定特征向量的训练过程(300)创建预定模型。 当确定对设备或系统的访问权限时,用于将未识别的类识别为一组类的类的过程(400)是有用的。
    • 7. 发明授权
    • Speech classifier and method using delay elements
    • 语音分类器和使用延迟元素的方法
    • US6038535A
    • 2000-03-14
    • US45917
    • 1998-03-23
    • William Michael Campbell
    • William Michael Campbell
    • G10L15/06G10L15/08G10L7/08
    • G10L15/08G10L15/063
    • Classifiers (110) and a selector (112) perform an identification method (300) to identify an ordered set of vectors (e.g., spoken commands, phoneme identification, radio signatures, communication channels, etc.) representing a class as one of a predetermined set of classes. Training processor (104) performs a training method (200) to train a set of models and store the models in a model memory (108). Classifiers (110) receive models from the model memory and combine the models with the ordered set of vectors to determine a set of scores. The selector associates the set of scores with the predetermined set of classes to identify the ordered set of vectors as a class from the predetermined set of classes.
    • 分类器(110)和选择器(112)执行识别方法(300)以将表示类的有序矢量集(例如,口语命令,音素识别,无线电签名,通信信道等)标识为预定的 一套课。 训练处理器(104)执行训练方法(200)以训练一组模型并将模型存储在模型存储器(108)中。 分类器(110)从模型存储器接收模型,并将模型与有序矢量集合组合以确定一组分数。 所述选择器将所述分数​​集与所述预定类的集合相关联,以从所述预定类的集合中将所述有序向量集合识别为类。
    • 10. 发明授权
    • Method and apparatus for inerative training of a classification system
    • 分类系统的无人训练的方法和装置
    • US06571229B1
    • 2003-05-27
    • US09584155
    • 2000-05-31
    • William Michael Campbell
    • William Michael Campbell
    • G06F1518
    • G06K9/6287G06F17/12G10L17/08
    • A process and apparatus for solving the product y=Rw, where R is a matrix and w is a vector. The process includes a steps of using a matrix outer product structure of R to determine all of the unique entries in R and storing the unique monomials. A different unique number is assigned to unique entries so that each unique entry has an associated number, and the associated numbers are stored. Rw is then solved using the stored associated numbers to obtain a result in terms of the associated numbers, and converting the result to entries from the matrix R. In the preferred embodiment, the process is used for iterative training in a classification system and especially a classification system on a portable platform.
    • 用于求解乘积y = Rw的过程和装置,其中R是矩阵,w是向量。 该过程包括使用R的矩阵外积结构来确定R中的所有唯一条目并存储唯一单项式的步骤。 将不同的唯一编号分配给唯一条目,以便每个唯一条目都具有相关号码,并存储相关号码。 然后使用所存储的关联号码来解决Rw,以获得关于相关号码的结果,并将结果转换为来自矩阵R的条目。在优选实施例中,该过程用于分类系统中的迭代训练,特别是 便携式平台上的分类系统。