会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • ITLDD transistor having variable work function and method for
fabricating the same
    • 具有可变功函数的ITLDD晶体管及其制造方法
    • US5061647A
    • 1991-10-29
    • US597946
    • 1990-10-12
    • Scott S. RothCarlos A. MazureKent J. CooperWayne J. RayMichael P. WooJung-Hui Lin
    • Scott S. RothCarlos A. MazureKent J. CooperWayne J. RayMichael P. WooJung-Hui Lin
    • H01L21/28H01L21/336H01L29/423H01L29/49H01L29/78
    • H01L29/6659H01L21/28114H01L29/42376H01L29/4983H01L29/7836
    • A semiconductor device and process wherein an ITLDD device (60) is formed having an inverse-T (IT) transistor gate with a variable work function (.PHI.) across the gate. The variable work function is attained by depositing a work function adjusting layer onto the thin gate extensions of the IT-gate. In accordance with one embodiment of the invention, a semiconductor substrate (10) of a first conductivity type is provided having a gate dielectric layer (12) formed thereon. First and second lightly doped regions (36, 37) of a second conductivity type are formed in the substrate which are spaced apart by a channel region (38). An IT-gate electrode (48) is formed on the gate dielectric layer overlying the first and second lightly doped regions and the channel region. The IT-gate has a relatively thick central section (32) and relatively thin lateral extensions (50) projecting from the central portion along the gate dielectric layer. A work function adjusting layer (46) overlies and is in intimate contact with at least the lateral extensions of the IT-gate. The presence of the work function adjusting layer changes the electrical characteristics of the extensions relative to the central section of the IT-gate. Heavily doped source and drain regions (52, 53) of the second conductivity type are formed in the substrate adjacent to the first and second lightly doped regions and aligned to the edge of the gate extensions.
    • 一种半导体器件和工艺,其中ITLDD器件(60)形成为具有跨越栅极的具有可变功函数(PHI)的逆T(IT)晶体管栅极。 可变功函数是通过将工作功能调整层沉积到IT门的薄门延伸上来实现的。 根据本发明的一个实施例,提供具有形成在其上的栅介电层(12)的第一导电类型的半导体衬底(10)。 第二导电类型的第一和第二轻掺杂区域(36,37)形成在衬底中,其被沟道区域(38)隔开。 在覆盖第一和第二轻掺杂区域和沟道区域的栅极电介质层上形成IT栅电极(48)。 IT门具有相对较厚的中心部分(32)和相对较薄的横向延伸部分(50),从中心部分沿着栅极介电层突出。 工作功能调整层(46)覆盖至少与IT门的侧向延伸部紧密接触。 工作功能调整层的存在改变了延伸部分相对于IT门的中心部分的电气特性。 第二导电类型的重掺杂源极和漏极区域(52,53)形成在与第一和第二轻掺杂区域相邻的衬底中,并且与栅极延伸部分的边缘对准。
    • 4. 发明授权
    • ITLDD transistor having a variable work function
    • 具有可变功函数的ITLDD晶体管
    • US5210435A
    • 1993-05-11
    • US745652
    • 1991-08-16
    • Scott S. RothCarlos A. MazureKent J. CooperWayne J. RayMichael P. WooJung-Hui Lin
    • Scott S. RothCarlos A. MazureKent J. CooperWayne J. RayMichael P. WooJung-Hui Lin
    • H01L21/28H01L21/336H01L29/423H01L29/49H01L29/78
    • H01L29/6659H01L21/28114H01L29/42376H01L29/4983H01L29/7836
    • A semiconductor device and process wherein an ITLDD device (60) is formed having an inverse-T (IT) transistor gate with a variable work function (.PHI.) across the gate. The variable work function is attained by depositing a work function adjusting layer onto the thin gate extensions of the IT-gate. In accordance with one embodiment of the invention, a semiconductor substrate (10) of a first conductivity type is provided having a gate dielectric layer (12) formed thereon. First and second lightly doped regions (36, 37) of a second conductivity type are formed in the substrate which are spaced apart by a channel region (38). An IT-gate electrode (48) is formed on the gate dielectric layer overlying the first and second lightly doped regions and the channel region. The IT-gate has a relatively thick central section (32) and relatively thin lateral extensions (50) projecting from the central portion along the gate dielectric layer. A work function adjusting layer (46) overlies and is in intimate contact with at least the lateral extensions of the IT-gate. The presence of the work function adjusting layer changes the electrical characteristics of the extensions relative to the central section of the IT-gate. Heavily doped source and drain regions (52, 53) of the second conductivity type are formed in the substrate adjacent to the first and second lightly doped regions and aligned to the edge of the gate extensions.
    • 一种半导体器件和工艺,其中ITLDD器件(60)形成为具有跨越栅极的具有可变功函数(PHI)的逆T(IT)晶体管栅极。 可变功函数是通过将工作功能调整层沉积到IT门的薄门延伸上来实现的。 根据本发明的一个实施例,提供具有形成在其上的栅介电层(12)的第一导电类型的半导体衬底(10)。 第二导电类型的第一和第二轻掺杂区域(36,37)形成在衬底中,其被沟道区域(38)隔开。 在覆盖第一和第二轻掺杂区域和沟道区域的栅极电介质层上形成IT栅电极(48)。 IT门具有相对较厚的中心部分(32)和相对较薄的横向延伸部分(50),从中心部分沿着栅极介电层突出。 工作功能调整层(46)覆盖至少与IT门的侧向延伸部紧密接触。 工作功能调整层的存在改变了延伸部分相对于IT门的中心部分的电气特性。 第二导电类型的重掺杂源极和漏极区域(52,53)形成在与第一和第二轻掺杂区域相邻的衬底中,并且与栅极延伸部分的边缘对准。
    • 5. 发明授权
    • Method of forming recessed oxide isolation
    • 形成凹陷氧化物隔离的方法
    • US5246537A
    • 1993-09-21
    • US876146
    • 1992-04-30
    • Kent J. CooperScott S. RothWayne J. RayHoward C. Kirsch
    • Kent J. CooperScott S. RothWayne J. RayHoward C. Kirsch
    • H01L21/76H01L21/762
    • H01L21/76227
    • A method requiring only a single mask results in an isolation oxide (50) which is the same size as, instead of becoming larger than, the dimension originally defined by the lithographic system. A buffer layer (14) is formed over the substrate (12). An oxidation resistant layer (16) is formed over the buffer layer (14). The oxidation resistant layer (16) is etched and a disposable sidewall spacer (30) is formed adjacent to the sidewall of the oxidation resistant layer (28), and a trench region is defined (36). The trench region (36) is etched to form a trench. The disposable sidewall spacer (30) is removed and a conformal layer (48) of oxidizable material is deposited over the trench sidewall (40) and the trench bottom surface (38). The conformal layer (48) is then oxidized to form electrical isolation in the isolation regions (26) of the substrate (12).
    • 仅需要单个掩模的方法产生与原始由光刻系统定义的尺寸相同的尺寸的隔离氧化物(50),而不是变大。 在衬底(12)上形成缓冲层(14)。 在缓冲层(14)上形成抗氧化层(16)。 蚀刻抗氧化层(16),并且邻近抗氧化层(28)的侧壁形成一次侧壁间隔物(30),并且限定沟槽区域(36)。 蚀刻沟槽区域(36)以形成沟槽。 一次性侧壁间隔件(30)被去除,并且可氧化材料的共形层(48)沉积在沟槽侧壁(40)和沟槽底表面(38)上。 然后将保形层(48)氧化以在衬底(12)的隔离区域(26)中形成电隔离。
    • 6. 发明授权
    • Self-aligned under-gated thin film transistor and method of formation
    • 自对准底栅薄膜晶体管及其形成方法
    • US5158898A
    • 1992-10-27
    • US794279
    • 1991-11-19
    • James D. HaydenBich-Yen NguyenKent J. Cooper
    • James D. HaydenBich-Yen NguyenKent J. Cooper
    • H01L29/78H01L21/336H01L21/84H01L29/786
    • H01L29/66765H01L21/84H01L29/78678
    • A self-aligned, under-gated TFT device (10). A base layer (14) is formed. A conductive layer (16) is formed overlying the base layer (14). A dielectric layer (18) is formed overlying the conductive layer (16). A sacrificial layer (20) is formed overlying the dielectric layer (18). The layers (16, 18, and 20) are etched to form a "pillar" region. A dielectric layer (22) and a planar layer (24), which both overlie the "pillar" region, are etched back to form a substantially planar surface and expose a top portion of the sacrificial layer (20). The sacrificial layer (20) is removed and a conductive layer (28) is formed overlying conductive region (16) and planar layer (22). Conductive layer (28) is used to form a self-aligned TFT device (10) via the formation of a source region (33) and a drain region (34) adjacent an aligned plug region (32).
    • 一种自对准的下栅极TFT器件(10)。 形成基层(14)。 形成在基底层(14)上方的导电层(16)。 形成在导电层(16)上方的电介质层(18)。 形成覆盖在电介质层(18)上的牺牲层(20)。 层(16,18和20)被蚀刻以形成“柱”区域。 将覆盖在“柱”区域上的电介质层(22)和平面层(24)被回蚀刻以形成基本上平坦的表面并且暴露牺牲层(20)的顶部部分。 去除牺牲层(20),并且形成覆盖导电区域(16)和平面层(22)的导电层(28)。 导电层(28)用于通过形成邻近对准的插塞区域(32)的源区(33)和漏区(34)来形成自对准TFT器件(10)。
    • 8. 发明授权
    • Method of making a contact structure
    • 制作接触结构的方法
    • US5604159A
    • 1997-02-18
    • US188986
    • 1994-01-31
    • Kent J. CooperScott S. Roth
    • Kent J. CooperScott S. Roth
    • H01L21/28H01L21/44H01L21/48
    • H01L21/28
    • The horizontal surface area required to contact semiconductor devices, in integrated circuits fabricated with trench isolation, is minimized without degrading contact resistance by utilizing the vertical surface area of the trench sidewall. A trench isolation region (40) is formed within the semiconductor substrate (12). A doped region (74, 96) is then formed such that it abuts the trench sidewall (24). A portion (56, 110) of the trench sidewall (24), abutting the doped region (74, 96), is then exposed by forming a recess (55, 112) within the trench isolation region (40). A conductive member (66, 114, 118) is then formed such that it is electrically coupled to the doped region (74, 96) along the exposed trench sidewall, as well as along the major surface (13) of the semiconductor substrate (12), and results in the formation of a low resistance contact structure.
    • 在通过沟槽隔离制造的集成电路中接触半导体器件所需的水平表面积被最小化,而不会通过利用沟槽侧壁的垂直表面积来降低接触电阻。 沟槽隔离区(40)形成在半导体衬底(12)内。 然后形成掺杂区域(74,96),使得其邻接沟槽侧壁(24)。 然后,通过在沟槽隔离区域(40)内形成凹部(55,112)来暴露沟槽侧壁(24)的与掺杂区域(74,96)邻接的部分(56,110)。 然后形成导电构件(66,114,118),使得其沿着暴露的沟槽侧壁以及沿着半导体衬底(12)的主表面(13)电耦合到掺杂区域(74,96) ),并且导致形成低电阻接触结构。
    • 9. 发明授权
    • Contact structure and method of formation
    • 接触结构和形成方法
    • US06285073B1
    • 2001-09-04
    • US08453689
    • 1995-05-30
    • Kent J. CooperScott S. Roth
    • Kent J. CooperScott S. Roth
    • H01L2906
    • H01L21/28
    • The horizontal surface area required to contact semiconductor devices, in integrated circuits fabricated with trench isolation, is minimized without degrading contact resistance by utilizing the vertical surface area of the trench sidewall. A trench isolation region (40) is formed within the semiconductor substrate (12). A doped region (74, 96) is then formed such that it abuts the trench sidewall (24). A portion (56, 110) of the trench sidewall (24), abutting the doped region (74, 96), is then exposed by forming a recess (55, 112) within the trench isolation region (40). A conductive member (66, 114, 118) is then formed such that it is electrically coupled to the doped region (74, 96) along the exposed trench sidewall, as well as along the major surface (13) of the semiconductor substrate (12), and results in the formation of a low resistance contact structure.
    • 在通过沟槽隔离制造的集成电路中接触半导体器件所需的水平表面积被最小化,而不会通过利用沟槽侧壁的垂直表面积来降低接触电阻。 沟槽隔离区(40)形成在半导体衬底(12)内。 然后形成掺杂区域(74,96),使得其邻接沟槽侧壁(24)。 然后,通过在沟槽隔离区域(40)内形成凹部(55,112)来暴露沟槽侧壁(24)的与掺杂区域(74,96)邻接的部分(56,110)。 然后形成导电构件(66,114,118),使得其沿着暴露的沟槽侧壁以及沿着半导体衬底(12)的主表面(13)电耦合到掺杂区域(74,96) ),并且导致形成低电阻接触结构。
    • 10. 发明授权
    • Self-aligned thin film transistor
    • 自对准薄膜晶体管
    • US5308997A
    • 1994-05-03
    • US902216
    • 1992-06-22
    • Kent J. CooperScott S. RothJames D. HaydenHoward C. Kirsch
    • Kent J. CooperScott S. RothJames D. HaydenHoward C. Kirsch
    • H01L29/78H01L21/336H01L27/11H01L29/417H01L29/786H01L29/04H01L27/01H01L31/036
    • H01L29/78696H01L27/1108H01L29/41733H01L29/66757
    • A thin film transistor with self-aligned source and drain regions is fabricated, in one embodiment, by forming an opening (124) in a dielectric layer (118) which overlies a substrate (116). A semiconductive sidewall spacer (130) is formed around the perimeter (126) of the opening (124) and adjacent to the sidewall (128) of the opening (124). A first electrode region (120) is electrically coupled to a first portion of the semiconductive sidewall spacer (130) at a first location along the perimeter (126) of the opening (124) which lies only in the second lateral half of the opening (124). A second electrode region (122) is electrically coupled to a second portion of the semiconductive sidewall spacer (130) at a second location along the perimeter (126) of the opening (124) which lies only in the first lateral half of the opening (124). A dielectric layer (132) is formed adjacent to the semiconductive sidewall spacer (130). A control electrode (134) is formed adjacent to the dielectric layer (132).
    • 在一个实施例中,通过在覆盖在基板(116)上的电介质层(118)中形成开口(124)来制造具有自对准源区和漏区的薄膜晶体管。 围绕开口(124)的周边(126)并且邻近开口(124)的侧壁(128)形成半导体侧壁间隔物(130)。 第一电极区域(120)在位于开口(124)的仅位于开口的第二侧面半部分(124)的周边(126)的第一位置处电耦合到半导体侧壁间隔件(130)的第一部分 124)。 第二电极区域(122)在位于开口(124)的仅位于开口的第一侧面半部分(124)的周边(126)的第二位置处电连接到半导体侧壁间隔件(130)的第二部分 124)。 邻近半导体侧壁间隔物(130)形成介电层(132)。 与电介质层(132)相邻地形成控制电极(134)。