会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • Auscultation Training System
    • 听诊培训系统
    • US20130071826A1
    • 2013-03-21
    • US13238125
    • 2011-09-21
    • Keith H. Johnson
    • Keith H. Johnson
    • G09B23/28
    • G09B23/28G09B23/30
    • An auscultation training system is disclosed comprising a half-body mannequin with speakers providing heart, lung, bowel and bruit sounds in the correct anatomical positions for student training of auscultation with a standard stethoscope. An integrated computer system provides the tools for training and assessing students. Synchronized phonocardiograms and a palpable carotid pulse accompany heart sounds. Sounds can be played and auscultated simultaneously to simulate a live patient, or played and auscultated separately for teaching purposes. The system may be accessed online using a virtual mannequin and stethoscope for viewing and listening to heart, lung, bowel and bruit sounds.
    • 公开了一种听诊培训系统,其包括具有扬声器的半身人体模特,在正确的解剖位置提供心脏,肺,肠和布鲁特的声音,用于用标准听诊器进行听诊的学生训练。 一个综合的计算机系统提供培训和评估学生的工具。 伴有心音的同步心音图和可触及的颈动脉脉。 声音可以同时播放和听诊,以模拟活的病人,或单独播放和听诊教学目的。 可以使用虚拟人体模型和听诊器在线访问系统,以观看和收听心脏,肺,肠和bruit的声音。
    • 6. 发明授权
    • Combustion of nanopartitioned fuel
    • 燃烧纳米颗粒燃料
    • US5992354A
    • 1999-11-30
    • US715810
    • 1996-09-18
    • Brian S. AhernHarry R. Clark, Jr.Keith H. Johnson
    • Brian S. AhernHarry R. Clark, Jr.Keith H. Johnson
    • C10L1/32F02B3/02F02B3/06F02B51/06G21B3/00H05H1/00F02B47/02F02P23/04
    • C10L1/328F02B3/02F02B51/06G21B3/00H05H1/00F02B3/06Y02E30/18Y02T10/126
    • The invention provides a scheme for combusting a hydrocarbon fuel to generate and extract enhanced translational energy. In the scheme, hydrocarbon fuel is nanopartitioned into nanometric fuel regions each having a diameter less than about 1000 angstroms; and either before or after the nanopartitioning, the fuel is introduced into a combustion chamber. In the combustion chamber, a shock wave excitation of at least about 50,000 psi and with an excitation rise time of less than about 100 nanoseconds is applied to the fuel. A fuel partitioned into such nanometric quantum confinement regions enables a quantum mechanical condition in which translational energy modes of the fuel are amplified, whereby the average energy of the translational energy mode levels is higher than it would be for a macro-sized, unpartitioned fuel. Combustion of such a nanopartitioned fuel provides enhanced translational energy extraction by way of, e.g., a reciprocating piston because only the translational energy mode of combustion products appreciably contributes to momentum exchange with the piston. The shock wave excitation provided by the invention, as applied to combustion of any fuel, and preferably to a nanopartitioned fuel, enhances translational energy extraction and exchange during combustion by enhancing translational energy mode amplification in the fuel and by enhancing transfer of an appreciable amount of energy from that translational mode to the piston before the combusted fuel re-equilibrates the translational energy into other energy modes.
    • 本发明提供一种用于燃烧碳氢化合物燃料以产生和提取增强的平移能量的方案。 在该方案中,碳氢化合物燃料被纳米级纳入每个直径小于约1000埃的纳米燃料区域; 并且在纳米颗粒之前或之后,将燃料引入燃烧室。 在燃烧室中,至少约50,000psi的冲击波激发和小于约100纳秒的激发上升时间被施加到燃料。 分配到这种纳米量子限制区域中的燃料使得能够扩大燃料的平移能量模式的量子力学条件,由此平移能量模式水平的平均能量高于对于大型未分配燃料的平均能量。 这种纳米颗粒燃料的燃烧通过例如往复活塞提供增强的平移能量提取,因为只有燃烧产物的平移能量模式明显有助于与活塞的动量交换。 本发明提供的冲击波激发,适用于任何燃料的燃烧,优选应用于纳米颗粒的燃料,通过增加燃料中的平移能量模式扩增,并通过增强转移可观量的燃料来增强燃烧过程中的平移能量提取和交换 在燃烧的燃料将平移能量重新平衡到其他能量模式之前,从该平移模式到活塞的能量。
    • 7. 发明授权
    • Combustion of nanopartitioned fuel
    • 燃烧纳米颗粒燃料
    • US06235067B1
    • 2001-05-22
    • US08933787
    • 1997-09-19
    • Brian S. AhernHarry R. Clark, Jr.Keith H. Johnson
    • Brian S. AhernHarry R. Clark, Jr.Keith H. Johnson
    • B01J1300
    • C10L1/328F02B3/02F02B3/06F02B51/06G21B3/00H05H1/00Y02E30/18Y02T10/126
    • The invention provides a scheme for combusting a hydrocarbon fuel to generate and extract enhanced translational energy. In the scheme, hydrocarbon fuel is nanopartitioned into nanometric fuel regions each having a diameter less than about 1000 angstroms; and either before or after the nanopartitioning, the fuel is introduced into a combustion chamber. In the combustion chamber, a shock wave excitation of at least about 50,000 psi and with an excitation rise time of less than about 100 nanoseconds is applied to the fuel. A fuel partitioned into such nanometric quantum confinement regions enables a quantum mechanical condition in which translational energy modes of the fuel are amplified, whereby the average energy of the translational energy mode levels is higher than it would be for a macro-sized, unpartitioned fuel. Combustion of such a nanopartitioned fuel provides enhanced translational energy extraction by way of, e.g., a reciprocating piston because only the translational energy mode of combustion products appreciably contributes to momentum exchange with the piston. The shock wave excitation provided by the invention, as applied to combustion of any fuel, and preferably to a nanopartitioned fuel, enhances translational energy extraction and exchange during combustion by enhancing translational energy mode amplification in the fuel and by enhancing transfer of an appreciable amount of energy from that translational mode to the piston before the combusted fuel re-equilibrates the translational energy into other energy modes.
    • 本发明提供一种用于燃烧碳氢化合物燃料以产生和提取增强的平移能量的方案。 在该方案中,碳氢化合物燃料被纳米级纳入每个直径小于约1000埃的纳米燃料区域; 并且在纳米颗粒之前或之后,将燃料引入燃烧室。 在燃烧室中,至少约50,000psi的冲击波激发和小于约100纳秒的激发上升时间被施加到燃料。 分配到这种纳米量子限制区域中的燃料使得能够扩大燃料的平移能量模式的量子力学条件,由此平移能量模式水平的平均能量高于对于大型未分配燃料的平均能量。 这种纳米颗粒燃料的燃烧通过例如往复活塞提供增强的平移能量提取,因为只有燃烧产物的平移能量模式明显有助于与活塞的动量交换。 本发明提供的冲击波激发,适用于任何燃料的燃烧,优选应用于纳米颗粒的燃料,通过增加燃料中的平移能量模式扩增,并通过增强转移可观量的燃料来增强燃烧过程中的平移能量提取和交换 在燃烧的燃料将平移能量重新平衡到其他能量模式之前,从该平移模式到活塞的能量。
    • 9. 发明授权
    • Method of maximizing anharmonic oscillations in deuterated alloys
    • 最大化氘代合金中的非谐振荡的方法
    • US5674632A
    • 1997-10-07
    • US331014
    • 1994-10-28
    • Brian S. AhernKeith H. JohnsonHarry R. Clark, Jr.
    • Brian S. AhernKeith H. JohnsonHarry R. Clark, Jr.
    • C25B11/08F02B3/06F02B51/06G21B3/00H05H1/00B32B33/00
    • H05H1/00F02B51/06G21B3/002F02B3/06Y02T10/126Y10T428/12472Y10T428/12493Y10T428/12778Y10T428/12875Y10T428/12944
    • For a condensed matter system containing a guest interstitial species such as hydrogen or its isotopes dissolved in the condensed matter host lattice, the invention provides tuning of the molecular orbital degeneracy of the host lattice to enhance the anharmonicity of the dissolved guest sublattice to achieve a large anharmonic displacement amplitude and a correspondingly small distance of closest approach of the guest nuclei. The tuned electron molecular orbital topology of the host lattice creates an energy state giving rise to degenerate sublattice orbitals related to the second nearest neighbors of the guest bonding orbitals. Thus, it is the nuclei of the guest sublattice that are set in anharmonic motion as a result of the orbital topology. This promotion of second nearest neighbor bonding between sublattice nuclei leads to enhanced interaction between nuclei of the sublattice. In the invention, a method for producing dynamic anharmonic oscillations of a condensed matter guest species dissolved in a condensed matter host lattice is provided. Host lattice surfaces are treated to provide surface features on at least a portion of the host lattice surfaces; the features have a radius of curvature less than 0.5 microns. Upon dissolution of the guest species in the treated host lattice in a ratio of at least 0.5, the guest species undergoes the dynamic anharmonic oscillations.
    • 对于包含溶解在浓缩物质主晶格中的诸如氢或其同位素的客体间质物质的凝聚物体系,本发明提供了主晶格的分子轨道简并性的调谐,以增强溶解的客体亚晶格的非调和性,以实现大的 非调谐位移振幅和相对较小的客机核心距离最接近。 主晶格的调谐电子分子轨道拓扑形成能量状态,产生与客体键合轨道的第二最近邻近相关的退化亚晶格轨道。 因此,作为轨道拓扑的结果,客体子格子的核心被设置为非调谐运动。 这种对亚晶格核之间的第二近邻键合的促进导致子晶格的核之间增强的相互作用。 在本发明中,提供了一种用于产生溶解在凝聚物宿主晶格中的冷凝物质物质的动态非调谐振荡的方法。 处理主晶格表面以在主晶格表面的至少一部分上提供表面特征; 这些特征具有小于0.5微米的曲率半径。 在客体物质以至少为0.5的比例溶解处理的主体晶格时,客体物质经历动态非谐振荡。