会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明授权
    • Tuneable photonic crystal lasers and a method of fabricating the same
    • 可调光子晶体激光器及其制造方法
    • US06711200B1
    • 2004-03-23
    • US09656324
    • 2000-09-06
    • Axel SchererOskar Painter
    • Axel SchererOskar Painter
    • H01S303
    • G02B6/122B82Y20/00G02B6/1225G02B6/136H01S3/0602H01S3/0635H01S5/06256H01S5/1042H01S5/105H01S5/183H01S5/187
    • Room temperature lasing from optically pumped single defect in a two-dimensional photonic bandgap crystal is illustrated. The high Q optical microcavities are formed by etching an array of air holes into a half wavelength thick multiquantum well waveguide. Defects in the two-dimensional photonic crystal or used to support highly localized optical modes with volumes ranging from 2 to 3 (&lgr;/2n)3. Lithographic tuning of the air hole radius and the lattice spacing is used to match the cavity wavelength to the quantum well gain peak, as well as to increase cavity Q. The defect lasers were pumped with 10-30 nsec pulse of 0.4-1 percent duty cycle. The threshold pump power was 1500 milliwatts. The confinement of the defect mode energy to a tiny volume and the enhancement of the spontaneous emission rate make the defect cavity an interesting device for low threshold, high spontaneous emission coupling factor lasers, and high modulation rate light emitting diodes. Optic structures formed from photonic crystals also hold promise due to the flexibility of their geometries. Lithographic methods may be employed to alter the photonic crystal geometry so as to tune device characteristics. The integration of densely packed photonic crystal waveguides, prisons, and light sources integrated on a single monolithic chip is made possible. Lithographically defined photonic crystal cavities may also find use in some material systems as an alternative to epitaxially grown mirrors, such as for long wavelengths vertical cavity surface emitting lasers (VCSEL) and GaN based devices.
    • 示出了在二维光子带隙晶体中的光泵浦单缺陷的室温激光。 高Q光学微腔是通过将一组空气孔蚀刻成半波长厚的多量子阱波导形成的。 二维光子晶体中的缺陷或用于支持体积范围为2至3(λ/ 2n)3的高度局部化光学模式。 使用空气孔半径和晶格间距的光刻调谐来匹配腔体波长与量子阱增益峰值,以及增加空腔Q.缺陷激光器以0.4-1%的占空比的10-30 ns脉冲泵浦 周期。 阈值泵功率为1500毫瓦。 将缺陷模式能量限制到微小体积并增加自发发射速率使得缺陷腔成为低阈值,高自发发射耦合因子激光器和高调制率发光二极管的有意义的装置。 由光子晶体形成的光学结构由于其几何形状的灵活性而具有前景。 可以使用光刻方法来改变光子晶体的几何形状,以便调节器件的特性。 密集封装的光子晶体波导,监视器和集成在单个单片芯片上的光源的集成是可能的。 光刻晶体空穴也可用于某些材料系统中,作为外延生长反射镜的替代品,例如用于长波长垂直腔表面发射激光器(VCSEL)和基于GaN的器件。