会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Robot apparatus, face recognition method, and face recognition apparatus
    • 机器人装置,人脸识别方法和人脸识别装置
    • US20050036649A1
    • 2005-02-17
    • US10399740
    • 2002-08-21
    • Jun YokonoKohtaro SabeKenta Kawamoto
    • Jun YokonoKohtaro SabeKenta Kawamoto
    • G06K9/00
    • G06K9/00288G06K9/00221G06K9/00228
    • A robot includes a face extracting section for extracting features of a face included in an image captured by a CCD camera, and a face recognition section for recognizing the face based on a result of face extraction by the face extracting section. The face extracting section is implemented by Gabor filters that filter images using a plurality of filters that have orientation selectivity and that are associated with different frequency components. The face recognition section is implemented by a support vector machine that maps the result of face recognition to a non-linear space and that obtains a hyperplane that separates in that space to discriminate a face from a non-face. The robot is allowed to recognize a face of a user within a predetermined time under a dynamically changing environment.
    • 机器人包括:面部提取部,用于提取由CCD照相机拍摄的图像中包含的面部的特征;以及面部识别部,其基于面部提取部的面部提取的结果识别脸部。 人脸提取部分由Gabor滤波器实现,该滤波器使用具有取向选择性并且与不同频率分量相关联的多个滤波器对图像进行滤波。 脸部识别部分由支持向量机实现,该支持向量机将人脸识别的结果映射到非线性空间,并获得在该空间中分离的超平面,以将脸部与非脸部区分开。 允许机器人在动态变化的环境下在预定时间内识别用户的脸部。
    • 2. 发明授权
    • Robot apparatus, face recognition method, and face recognition apparatus
    • 机器人装置,人脸识别方法和人脸识别装置
    • US07369686B2
    • 2008-05-06
    • US10399740
    • 2002-08-21
    • Jun YokonoKohtaro SabeKenta Kawamoto
    • Jun YokonoKohtaro SabeKenta Kawamoto
    • G06K9/00
    • G06K9/00288G06K9/00221G06K9/00228
    • A robot includes a face extracting section for extracting features of a face included in an image captured by a CCD camera, and a face recognition section for recognizing the face based on a result of face extraction by the face extracting section. The face extracting section is implemented by Gabor filters that filter images using a plurality of filters that have orientation selectivity and that are associated with different frequency components. The face recognition section is implemented by a support vector machine that maps the result of face recognition to a non-linear space and that obtains a hyperplane that separates in that space to discriminate a face from a non-face. The robot is allowed to recognize a face of a user within a predetermined time under a dynamically changing environment.
    • 机器人包括:面部提取部,用于提取由CCD照相机拍摄的图像中包含的面部的特征;以及面部识别部,其基于面部提取部的面部提取的结果识别脸部。 人脸提取部分由Gabor滤波器实现,该滤波器使用具有取向选择性并且与不同频率分量相关联的多个滤波器对图像进行滤波。 脸部识别部分由支持向量机实现,该支持向量机将人脸识别的结果映射到非线性空间,并获得在该空间中分离的超平面,以将脸部与非脸部区分开。 允许机器人在动态变化的环境下在预定时间内识别用户的脸部。
    • 3. 发明授权
    • Information processing device, information processing method, and program
    • 信息处理装置,信息处理方法和程序
    • US09104980B2
    • 2015-08-11
    • US13429130
    • 2012-03-23
    • Kuniaki NodaTakashi HasuoKenta KawamotoKohtaro Sabe
    • Kuniaki NodaTakashi HasuoKenta KawamotoKohtaro Sabe
    • G06K9/00G06N99/00
    • G06N99/005
    • An information processing device includes a learning unit that performs, using an action performed by an object and an observation value of an image as learning data, learning of a separation learning model that includes a background model that is a model of the background of the image and one or more foreground model(s) that is a model of a foreground of the image, which can move on the background, in which the background model includes a background appearance model indicating the appearance of the background, and at least one among the one or more foreground model(s) includes a transition probability, with which a state corresponding to the position of the foreground on the background is transitioned by an action performed by the object corresponding to the foreground, for each action, and a foreground appearance model indicating the appearance of the foreground.
    • 信息处理装置包括:学习单元,其使用由对象执行的动作和图像的观察值作为学习数据;学习包括作为图像的背景的模型的背景模型的分离学习模型; 以及一个或多个前景模型,其是可以在背景上移动的图像的前景的模型,其中背景模型包括指示背景的外观的背景外观模型,以及至少一个背景模型 一个或多个前景模型包括转移概率,对于每个动作,通过由对应于前景的对象执行的动作来转换对应于背景上的前景的位置的状态,以及前景外观模型 指示前景的外观。
    • 4. 再颁专利
    • Device and method for detecting object and device and method for group learning
    • 用于组学习的物体和装置的检测装置及方法
    • USRE43873E1
    • 2012-12-25
    • US13208123
    • 2011-08-11
    • Kenichi HidaiKohtaro SabeKenta Kawamoto
    • Kenichi HidaiKohtaro SabeKenta Kawamoto
    • G06K9/62G06K9/00
    • G06K9/6282G06K9/00248G06K9/6256
    • An object detecting device for detecting an object in a given gradation image. A scaling section generates scaled images by scaling down a gradation image input from an image output section. A scanning section sequentially manipulates the scaled images and cutting out window images from them and a discriminator judges if each window image is an object or not. The discriminator includes a plurality of weak discriminators that are learned in a group by boosting and an adder for making a weighted majority decision from the outputs of the weak discriminators. Each of the weak discriminators outputs an estimate of the likelihood of a window image to be an object or not by using the difference of the luminance values between two pixels. The discriminator suspends the operation of computing estimates for a window image that is judged to be a non-object, using a threshold value that is learned in advance.
    • 一种用于检测给定灰度图像中的物体的物体检测装置。 缩放部分通过缩小从图像输出部分输入的灰度图像来生成缩放图像。 扫描部分顺序地操纵缩放图像并从中切出窗口图像,并且鉴别器判断每个窗口图像是否是对象。 鉴别器包括通过升压在一组中学习的多个弱识别器和用于从弱识别器的输出进行加权多数决定的加法器。 每个弱识别器通过使用两个像素之间的亮度值的差异来输出窗口图像成为对象的可能性的估计。 鉴别器使用预先学习的阈值暂停对被判断为非对象的窗口图像的计算估计的操作。
    • 6. 发明申请
    • Device and method for detecting object and device and method for group learning
    • 用于组学习的物体和装置的检测装置及方法
    • US20050280809A1
    • 2005-12-22
    • US10994942
    • 2004-11-22
    • Kenichi HidaiKohtaro SabeKenta Kawamoto
    • Kenichi HidaiKohtaro SabeKenta Kawamoto
    • G06T1/00G06K9/00G06K9/62G06K9/68G06N3/08G06T7/00G01N21/00
    • G06K9/6282G06K9/00248G06K9/6256
    • An object detecting device 1 comprises a scaling section 3 for generating scaled images by scaling down a gradation image input from an image output section 2, a scanning section 4 for sequentially manipulating the scaled images and cutting out window images from them and a discriminator 5 for judging if each window image is an object or not. The discriminator 5 includes a plurality of weak discriminators that are learnt in a group by boosting and an adder for making a weighted majority decision from the outputs of the weak discriminators. Each of the weak discriminators outputs an estimate telling the likelihood of a window image to be an object or not by using the difference of the luminance values of two pixels. The discriminator 5 suspends the operation of computing estimates for a window image that is judged to be a non-object, using a threshold value that is learnt in advance.
    • 对象检测装置1包括:缩放部分3,用于通过缩小从图像输出部分2输入的灰度图像来生成缩放图像;扫描部分4,用于顺序地操纵缩放图像并从中切出窗口图像;以及鉴别器5, 判断每个窗口图像是否为一个对象。 鉴别器5包括通过升压在一组中学习的多个弱识别器和用于从弱识别器的输出进行加权多数决定的加法器。 每个弱识别器通过使用两个像素的亮度值的差异来输出估计窗口图像成为对象的可能性的估计。 鉴别器5使用预先学习的阈值来暂停对被判断为非对象的窗口图像的计算估计的操作。
    • 7. 发明授权
    • Information processing device and method, and program
    • 信息处理装置及方法,程序
    • US08755594B2
    • 2014-06-17
    • US13116412
    • 2011-05-26
    • Jun YokonoKohtaro Sabe
    • Jun YokonoKohtaro Sabe
    • G06K9/00
    • G06K9/6257G06K9/00791G06K2009/4666
    • An information processing device includes a first calculation unit which calculates a score of each sample image including a positive image in which an object as an identification object is present and a negative image in which the object as the identification object is not present, for each weak identifier of an identifier including a plurality of weak identifiers, a second calculation unit which calculates the number of scores when the negative image is processed, which are scores less than a minimum score among scores when the positive image is processed; and an realignment unit which realigns the weak identifiers in order from a weak identifier in which the number calculated by the second calculation unit is a maximum.
    • 一种信息处理设备,包括:第一计算单元,其计算包含其中存在作为识别对象的对象的正图像和不存在作为识别对象的对象的负图像的每个样本图像的得分,对于每个弱 标识符包括多个弱标识符的标识符;第二计算单元,当处理正图像时,计算负图像处理时的得分数,该分数小于分数中的最小得分; 以及重新排列单元,其从由第二计算单元计算的数量最大的弱识别符依次重新排列弱标识符。