会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Obtaining Spatially Varying Bidirectional Reflectance Distribution Function
    • 获得空间变化的双向反射分布函数
    • US20130093883A1
    • 2013-04-18
    • US13274191
    • 2011-10-14
    • Jiaping WangBaining GuoPeiran RenJohn Michael SnyderXin Tong
    • Jiaping WangBaining GuoPeiran RenJohn Michael SnyderXin Tong
    • H04N7/18
    • H04N1/00018G01N21/55H04N1/00013H04N1/00045H04N1/00087
    • A system for reflectance acquisition of a target includes a light source, an image capture device, and a reflectance reference chart. The reflectance reference chart is fixed relative to the target. The light source provides a uniform band of light across at least a dimension of the target. The image capture device is configured and positioned to encompass at least a portion of the target and at least a portion of the reflectance reference chart within a field-of-view of the image capture device. The image capture device captures a sequence of images of the target and the reflectance reference chart during a scan thereof. Reflectance responses are calculated for the pixels in the sequence of images. Reference reflectance response distribution functions are matched to the calculated reflectance responses, and an image of the target is reconstructed based at least in part on the matched reference reflectance response distribution functions.
    • 用于目标的反射获取的系统包括光源,图像捕获装置和反射率参考图。 反射率参考图表相对于目标是固定的。 光源在目标的至少一维上提供均匀的光束。 图像捕获设备被配置和定位成在图像捕获设备的视野内包围目标的至少一部分和反射参考图的至少一部分。 图像捕获装置在其扫描期间捕获目标的图像序列和反射率参考图。 针对图像序列中的像素计算反射响应。 参考反射响应分布函数与所计算的反射率响应匹配,并且至少部分地基于匹配的参考反射响应分布函数来重建目标的图像。
    • 2. 发明授权
    • Capturing reflected light from a sampling surface
    • 从采样表面捕获反射光
    • US08248613B2
    • 2012-08-21
    • US12769974
    • 2010-04-29
    • Jiaping WangMoshe BenezraXin TongJohn Michael SnyderBaining Guo
    • Jiaping WangMoshe BenezraXin TongJohn Michael SnyderBaining Guo
    • G01N21/55
    • G01N21/55
    • A mechanism is disclosed for capturing reflected rays from a surface. A first and second lens aligned along a same optical center axis are configured so that a beam of light collimated parallel to the lens center axis directed to a first side, is converged toward the lens center axis on a second side. A first light beam source between the first and second lenses directs a light beam toward the first lens parallel to the optical center axis. Second light beam source(s) on the second side of the first lens, direct a light beam toward a focal plane of the first lens at a desired angle. An image capturing component, at the second side of the second lens, has an image capture surface directed toward the second lens to capture images of the light reflected from a sample capture surface at the focal plane of the first lens.
    • 公开了用于从表面捕获反射光线的机构。 沿着相同的光学中心轴对准的第一和第二透镜被配置为使得平行于指向第一侧的透镜中心轴准直的光束在第二侧上朝向透镜中心轴会聚。 第一和第二透镜之间的第一光束源将平行于光学中心轴的光束朝着第一透镜引导。 在第一透镜的第二侧上的第二光束源将光束以期望的角度引导到第一透镜的焦平面。 在第二透镜的第二侧的图像捕获部件具有指向第二透镜的图像捕获表面,以捕获在第一透镜的焦平面处从样品捕获表面反射的光的图像。
    • 3. 发明授权
    • Real-time rendering of light-scattering media
    • 实时渲染光散射介质
    • US07940268B2
    • 2011-05-10
    • US11770942
    • 2007-06-29
    • Kun ZhouQiming HouMinmin GongJohn Michael SnyderBaining GuoHeung-Yeung Shum
    • Kun ZhouQiming HouMinmin GongJohn Michael SnyderBaining GuoHeung-Yeung Shum
    • G06T15/50G06T15/00
    • G06T15/506
    • A real-time algorithm for rendering an inhomogeneous scattering medium such as fog is described. An input media animation is represented as a sequence of density fields, each of which is decomposed into a weighted sum of a set of radial basis functions (RBFs) such as Gaussians. The algorithm computes airlight and surface reflectance of the inhomogeneous scattering medium. Several approximations are taken which lead to analytical solutions of quantities such as an optical depth integrations and single scattering integrations, and a reduced number of integrations that need to be calculated. The resultant algorithm is able to render inhomogeneous media including their shadowing and scattering effects in real time. The algorithm may be adopted for a variety of light sources including point lights and environmental lights.
    • 描述了用于渲染非均匀散射介质(如雾)的实时算法。 输入媒体动画被表示为密度字段的序列,每个密度字段被分解成一组径向基函数(RBF)如Gauss的加权和。 该算法计算不均匀散射介质的气孔和表面反射率。 采用几种近似方法,其导致诸如光学深度积分和单一散射积分的量的分析解,以及需要计算的减少的积分数。 所得到的算法能够实时渲染包括它们的阴影和散射效应的不均匀介质。 该算法可以用于各种光源,包括点光源和环境光源。
    • 4. 发明授权
    • Systems and methods for diffusing clipping error
    • 用于扩散裁剪错误的系统和方法
    • US07233963B2
    • 2007-06-19
    • US10103220
    • 2002-03-20
    • John Michael Snyder
    • John Michael Snyder
    • G06F15/00
    • H04N19/126H04N19/136H04N19/182H04N19/80H04N19/90
    • Systems and methods are provided for diffusing clipping error in a computing system. When a data set contains values which are to be restricted to a range, and the data set includes one or more values which are beyond the range, the invention provides methodology that is an improvement over clipping extraneous values to the range or squeezing the values to the range. Advantageously, systems and methods are provided for distributing or diffusing error to neighboring samples of the data set, thereby spreading localized error, and minimizing the effects associated with remapping the data set to the restrictive range.
    • 提供了系统和方法用于在计算系统中扩散裁剪错误。 当数据集包含要限制在一个范围内的数值时,并且该数据集包括一个或多个超出该范围的值时,本发明提供了一种方法,该方法是对将范围外的额外值或将值挤压到 范围。 有利地,提供了系统和方法用于将误差分布或扩散到数据集的相邻采样,由此扩展局部化误差,并使与数据集的重新映射相关联的影响最小化到限制范围。
    • 5. 发明授权
    • Systems and methods for optimizing geometric stretch of a parametrization scheme
    • 用于优化参数化方案的几何拉伸的系统和方法
    • US07224358B2
    • 2007-05-29
    • US10901826
    • 2004-07-28
    • Hugues Herve HoppeJohn Michael SnyderPedro Vieira SanderSteven Jacob Gortler
    • Hugues Herve HoppeJohn Michael SnyderPedro Vieira SanderSteven Jacob Gortler
    • G06T17/00
    • G06T17/20
    • Systems and methods are provided for optimizing the geometric stretch of a parametrization scheme. Given an arbitrary mesh, the systems and methods construct a progressive mesh (PM) such that all meshes in the PM sequence share a common texture parametrization. The systems and methods minimize geometric stretch, i.e., small texture distances mapped onto large surface distances, to balance sampling rates over all locations and directions on the surface. The systems and methods also minimize texture deviation, i.e., “slippage” error based on parametric correspondence, to obtain accurate textured mesh approximations. The technique(s) begin by partitioning the mesh into charts using planarity and compactness heuristics. Then, the technique(s) proceed by creating a stretch-minimizing parametrization within each chart, and by resizing the charts based on the resulting stretch. Then, the technique(s) simplify the mesh while respecting the chart boundaries. Next, the parametrization is re-optimized to reduce both stretch and deviation over the whole PM sequence. The charts may then be packed into a texture atlas for improved texture mapping in connection with a parametrization scheme.
    • 提供了用于优化参数化方案的几何拉伸的系统和方法。 给定任意网格,系统和方法构造渐进网格(PM),使得PM序列中的所有网格共享共同的纹理参数化。 系统和方法使几何拉伸最小化,即映射到大表面距离上的小纹理距离,以平衡表面上所有位置和方向上的采样率。 系统和方法还使纹理偏差最小化,即基于参数对应的“滑移”误差,以获得精确的纹理网格近似。 该技术首先将网格划分为使用平面性和紧凑性启发式的图表。 然后,通过在每个图表内创建拉伸最小化参数化,并且基于所得的拉伸来调整图表大小来继续进行该技术。 然后,技术简化网格,同时遵循图表边界。 接下来,参数化被重新优化以减少整个PM序列的拉伸和偏差。 然后可以将图表打包到纹理图集中,以改进与参数化方案相关的纹理映射。
    • 6. 发明授权
    • Systems and methods for providing forward mapping with visibility for and resolution of accumulated samples
    • 用于提供向前映射的系统和方法,具有对累积样本的可见性和分辨率
    • US07120311B2
    • 2006-10-10
    • US10186990
    • 2002-06-28
    • John Michael Snyder
    • John Michael Snyder
    • G06K9/36G06T15/40
    • G06T15/04G06T15/405
    • Forward mapping is provided, which accumulates and resolves over all samples forward mapped to each pixel bin. During accumulation and resolution of each of the samples, since a point sample from a forefront object and a point sample from an occluded object may be received by the same bin, wherein only the former should be accumulated and resolved according to the accumulation and resolution process, a Z-range, or Z-interval, is assigned to each sample instead of the conventional Z-value. The Z-range is a function of the Z-value. Analysis of the overlapping of these Z-ranges then determines which samples are to be accumulated and resolved together according to the accumulation and resolution process, and which are not.
    • 提供前向映射,其累加并解析所有正向映射到每个像素块的样本。 在每个样本的累积和解析期间,由于来自前端对象的点样本和来自闭塞对象的点样本可以由同一个仓接收,其中只有前者应该根据累积和解析过程被累积和解决 ,Z范围或Z间隔被分配给每个样本,而不是传统的Z值。 Z范围是Z值的函数。 然后分析这些Z范围的重叠,然后根据累积和解析过程确定要累积和解析哪些样本,哪些不是。
    • 8. 发明申请
    • Real-Time Rendering of Light-Scattering Media
    • 光散射介质的实时渲染
    • US20090006051A1
    • 2009-01-01
    • US11770942
    • 2007-06-29
    • Kun ZhouQiming HouMinmin GongJohn Michael SnyderBaining GuoHeung-Yeung Shum
    • Kun ZhouQiming HouMinmin GongJohn Michael SnyderBaining GuoHeung-Yeung Shum
    • G06G7/48
    • G06T15/506
    • A real-time algorithm for rendering an inhomogeneous scattering medium such as fog is described. An input media animation is represented as a sequence of density fields, each of which is decomposed into a weighted sum of a set of radial basis functions (RBFs) such as Gaussians. The algorithm computes airlight and surface reflectance of the inhomogeneous scattering medium. Several approximations are taken which lead to analytical solutions of quantities such as an optical depth integrations and single scattering integrations, and a reduced number of integrations that need to be calculated. The resultant algorithm is able to render inhomogeneous media including their shadowing and scattering effects in real time. The algorithm may be adopted for a variety of light sources including point lights and environmental lights.
    • 描述了用于渲染非均匀散射介质(如雾)的实时算法。 输入媒体动画被表示为密度字段的序列,每个密度字段被分解成一组径向基函数(RBF)如Gauss的加权和。 该算法计算不均匀散射介质的气孔和表面反射率。 采用几种近似方法,其导致诸如光学深度积分和单一散射积分的量的分析解,以及需要计算的减少的积分数。 所得到的算法能够实时渲染包括它们的阴影和散射效应的不均匀介质。 该算法可以用于各种光源,包括点光源和环境光源。
    • 9. 发明授权
    • Systems and methods for providing signal-specialized parametrization
    • 提供信号专门参数化的系统和方法
    • US07425954B2
    • 2008-09-16
    • US11145196
    • 2005-06-03
    • Hugues Herve HoppeJohn Michael SnyderPedro Vieira SanderSteven Jacob Gortler
    • Hugues Herve HoppeJohn Michael SnyderPedro Vieira SanderSteven Jacob Gortler
    • G06T17/20
    • G06T17/205G06T17/20
    • Systems and methods are provided for optimizing a parametrization scheme in accordance with information about the surface signal. A surface parametrization is created to store a given surface signal into a texture image. The signal-specialized metric of the invention minimizes signal approximation error, i.e., the difference between the original surface signal and its reconstruction from the sampled texture. A signal-stretch parametrization metric is derived based on a Taylor expansion of signal error. For fast evaluation, the metric of the invention is pre-integrated over the surface as a metric tensor. The resulting parametrizations have increased texture resolution in surface regions with greater signal detail. Compared to traditional geometric parametrizations, the number of texture samples can often be reduced by a significant factor for a desired signal accuracy.
    • 提供的系统和方法用于根据关于表面信号的信息优化参数化方案。 创建表面参数以将给定的表面信号存储到纹理图像中。 本发明的信号专用度量使信号近似误差最小化,即原始表面信号与其从采样纹理的重构之间的差异。 基于信号误差的泰勒扩展导出信号拉伸参数度量。 为了快速评估,本发明的度量作为度量张量在表面上预先集成。 所产生的参数化在具有更大信号细节的表面区域中增加了纹理分辨率。 与传统的几何参数化相比,纹理样本的数量通常可以通过一个重要的因素来减少所需的信号精度。