会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Integrating fluxgate magnetometer
    • 集成磁通门磁强计
    • US06278272B1
    • 2001-08-21
    • US09517558
    • 2000-03-02
    • John F. ScarzelloJohn J. HolmesEdward C. O'Keefe
    • John F. ScarzelloJohn J. HolmesEdward C. O'Keefe
    • G01R3304
    • G01R33/045
    • A magnetic field sensor based on fluxgate magnetometric principles includes a magnetic core having an elongated oblong configuration and accordingly defining a closed magnetic flux path. The core includes a rigid bobbin which defines the core's shape, and about which amorphous magnetic material is wrapped. A drive winding is wound about each of the two parallel linear sections of the core. A sense winding is wound about another rigid bobbin which surrounds the drive winding-wound core. Typically, a feedback winding is wound about another rigid bobbin which surrounds the sense winding. When, for sensing purposes, the driven sensor is situated near and parallel to a ferromagnetic material surface, the sensor is capable of generating a detectable signal which is representative of the “integration” of magnetic field components over the length of the core. The invention's integrative function minimizes measurement skewing or distortion attributable to anomalous characteristics of the ferromagnetic material being sensed.
    • 基于磁通门磁力计原理的磁场传感器包括具有细长椭圆形构造并因此限定闭合磁通路径的磁芯。 芯包括限定芯的形状的刚性线轴,以及围绕其形成非晶磁性材料。 驱动绕组缠绕在芯的两个平行线段中的每一个上。 感测绕组缠绕在围绕驱动绕组磁芯的另一个刚性线轴上。 通常,反馈绕组缠绕在围绕感测绕组的另一个刚性线轴上。 为了感测目的,当驱动传感器位于铁磁材料表面附近并平行时,传感器能够产生可检测的信号,该信号代表磁芯长度上的磁场分量的“积分”。 本发明的综合功能最小化了由感测的铁磁材料的异常特性引起的测量偏移或失真。
    • 4. 发明授权
    • Spatially integrating fluxgate manetometer having a flexible magnetic core
    • 具有柔性磁芯的空间积分磁通门强度计
    • US06417665B1
    • 2002-07-09
    • US09517560
    • 2000-03-02
    • John F. ScarzelloJohn J. HolmesEdward C. O'Keefe
    • John F. ScarzelloJohn J. HolmesEdward C. O'Keefe
    • G01R3304
    • G01R33/045
    • A magnetic field sensor based on fluxgate magnetometric principles includes a magnetic core having a highly elongated oblong configuration and accordingly defining a closed magnetic flux path. The core includes flexible amorphous magnetic material. A drive winding is wound about each of two linear sections of the core. The two drive winding-wound linear core sections are closely coupled in parallel adjacent disposition. A sense winding is wound about the drive winding-wound core, thereby forming a narrow unitary strip-like sensor construction which, depending on the embodiment, can be practically any length. Typically, a very long sensor is situated huggingly or abuttingly with respect to a great expanse of a ferromagnetic material surface. The sensor is capable of generating a detectable signal which is representative of the “integration” of magnetic field components over the length of the core. The invention's integrative function minimizes measurement skewing or distortion attributable to anomalous characteristics of the ferromagnetic material being sensed. The invention's “integrative” sensor admits of systematic association with any number and diverse kinds of “point” sensors, in furtherance of more complete data acquisition.
    • 基于磁通门磁力计原理的磁场传感器包括具有高度细长椭圆形构造并因此限定闭合磁通路径的磁芯。 芯包括柔性非晶磁性材料。 驱动绕组围绕芯的两个线性部分中的每一个缠绕。 两个驱动绕组的线性芯部分相邻配置紧密耦合。 感应绕组缠绕在驱动绕线芯上,从而形成窄的单一条状传感器结构,根据实施例,传感器结构实际上可以是任何长度。 通常,非常长的传感器相对于铁磁材料表面的大片而拥挤地或邻接地位置。 该传感器能够产生可检测的信号,其表示在磁芯长度上的磁场分量的“积分”。 本发明的综合功能最小化了由感测的铁磁材料的异常特性引起的测量偏移或失真。 本发明的“综合”传感器承认与任何数量多样的“点”传感器的系统关联,以促进更完整的数据采集。
    • 5. 发明授权
    • Fluxgate magnetic field sensor incorporating ferromagnetic test material into its magnetic circuitry
    • 磁通门磁场传感器将铁磁测试材料结合到其磁路中
    • US06456069B1
    • 2002-09-24
    • US09517559
    • 2000-03-02
    • John F. ScarzelloJohn J. HolmesEdward C. O'Keefe
    • John F. ScarzelloJohn J. HolmesEdward C. O'Keefe
    • G01R3302
    • G01R33/045
    • A magnetic field sensor, for sensing the transverse component of the magnetic field intensity H, is based on fluxgate magnetometric principles and includes an “E”-shaped magnetic core. A drive winding is wound about the medial leg of the “E” shape. A sense winding is wound about the base of the “E” shape at the two locations between the medial leg and the extreme legs. A calibration winding is wound about each leg. Another magnetic field sensor, for sensing the normal component of the magnetic induction B, is also based on fluxgate magnetometric principles and includes a magnetic core having a sort of coaxial double cylindrical configuration wherein a basket-shaped cylinder encloses a smaller, solid cylinder. A drive winding, then a sense winding, then a calibration winding are wound over the solid cylinder. During operative placement of either inventive sensor in appropriate relation to a ferromagnetic surface, a closed magnetic flux path is manifested through the sensor and the ferromagnetic material; in effect, the ferromagnetic material is made a part of the sensor's transducer core.
    • 用于感测磁场强度H的横向分量的磁场传感器基于磁通门磁力计原理,并且包括“E”形磁芯。 驱动绕组缠绕在“E”形的内侧腿上。 在内侧腿和极腿之间的两个位置处,感觉绕组围绕“E”形的基部缠绕。 校正绕组缠绕在每条腿上。 用于感测磁感应B的正常分量的另一个磁场传感器也基于磁通门磁力计原理,并且包括具有一种同轴双圆柱形构造的磁芯,其中篮状气缸包围较小的实心气缸。 驱动绕组,然后是感应绕组,然后校准绕组缠绕在实心圆柱体上。 在将本发明的传感器与铁磁表面适当关系的操作性放置期间,通过传感器和铁磁材料表现出闭合磁通路径; 实际上,铁磁材料被制成传感器的换能器芯的一部分。
    • 6. 发明授权
    • Gradiometric measurement methodology for determining magnetic fields of large objects
    • 用于确定大型物体磁场的Gradiometric测量方法
    • US06714008B1
    • 2004-03-30
    • US10206761
    • 2002-07-29
    • John J. HolmesJohn F. ScarzelloBruce R. Hood
    • John J. HolmesJohn F. ScarzelloBruce R. Hood
    • G01R3300
    • G01R33/022
    • Gradiometers are encompassingly disposed, relative to an object of interest, in a configuration generally describing a closed prolate spheroidal shape, and the measurements taken by the gradiometers are mathematically processed. The gradiometric measurements are defined as directional derivatives which exist in equations involving directional derivatives and prolate spheroidal multipole moments of said entity. The prolate spheroidal multipole moments are thereby calculated, and these prolate spheroidal multipole moment values are extrapolated to ascertain the magnetic fields (equivalently expressed, the magnetic signatures) associated with the object and inwardly delimited by the prolate spheroid. The practitioner can optimize such distribution numerically, orientationally and/or positionally by using the equations involving directional derivatives and prolate spheroidal multipole moments. Extraneous magnetic field effects (e.g., applied fields, earth fields) are inherently excluded, thus obviating the object's removal from an electromagnetic test facility.
    • 辐射计相对于感兴趣的物体被概括地设置在通常描述闭合的长椭球形状的构型中,并且数学地处理由梯度计进行的测量。 梯度测量被定义为方程导数,其存在于涉及方向导数和所述实体的长圆球形多极矩的方程中。 由此计算出长椭球形多极矩,并推断出这些长椭球多极矩值,以确定与物体相关的磁场(等价表示为磁特征),并由长椭球体内向界定。 从业者可以通过使用涉及方向导数和长圆球形多极矩的方程来数字,方向和/或位置优化这种分布。 固有地排除了外部磁场效应(例如,施加的场,地球场),从而避免了物体从电磁测试设备的移除。
    • 7. 发明授权
    • Standing wave magnetometer
    • 驻波磁力计
    • US06344743B1
    • 2002-02-05
    • US09262932
    • 1999-03-05
    • John J. HolmesJohn F. Scarzello
    • John J. HolmesJohn F. Scarzello
    • G01R3302
    • G01R33/045
    • The invention uniquely avails of Fourier analytical principles for determining the distribution of a magnetic field in a one-dimensional (linear), two-dimensional (planar) or three-dimensional (spatial) region of interest. According to many embodiments, integrating sensor apparatus having an associated length is inventively implemented so as to measure the magnetic field amplitude value for each of two or more different points. Alternating current is applied at at least one high frequency whereby, for each such frequency, the associated wavelength corresponds to some multiple of the sensor's length. Coiled around the sensor is/are one or more solenoids which is/are configured so as to establish a standing wave along the sensor's length. Inventive adaptation of the sensor's integrating function basically entails regarding a Fourier-type harmonic bias function as being consequential of the standing wave. A Fourier coefficient is thus inventively found for each selected multiple of the sensor's length. The invention is especially advantageous because a single inventive sensor is capable of measuring a magnetic field distribution of virtually unlimited expanse, the extensiveness of which would conventionally require a multiplicity of arrayed sensors.
    • 本发明独特地用于确定感兴趣的一维(线性),二维(平面)或三维(空间)区域中的磁场分布的傅立叶分析原理。 根据许多实施例,本发明实现具有相关联长度的积分传感器装置,以便测量两个或多个不同点中的每一个的磁场振幅值。 交替电流以至少一个高频率施加,由此,对于每个这样的频率,相关波长对应于传感器长度的一些倍数。 传感器周围卷绕有一个或多个螺线管,其被构造成沿着传感器的长度建立驻波。 传感器集成功能的发明性适应性主要涉及傅里叶型谐波偏置功能,因此是驻波的结果。 因此,针对传感器长度的每个所选择的倍数,发现傅立叶系数。 本发明是特别有利的,因为单个本发明的传感器能​​够测量几乎无限宽的磁场分布,其广泛性通常需要多个阵列传感器。
    • 8. 发明授权
    • Power frequency electromagnetic field compensation system
    • 电力频率电磁场补偿系统
    • US06798632B1
    • 2004-09-28
    • US10171761
    • 2002-06-13
    • John J. HolmesJohn F. Scarzello
    • John J. HolmesJohn F. Scarzello
    • H01F1300
    • H01F13/006B63G9/06
    • The electromagnetic field produced by an electrical device is electromagnetically canceled by a three-dimensional configuration of electrical coils which together provide a box-like enclosure having at least six sides/faces. The electromagnetic containment of the electromagnetic field is effected via the physical occurrence of zero magnetic flux perpendicularly through each side/face. At least one coil is positioned in correspondence with each side/face of the box-like enclosure. Each coil has a set of conductors divided into two halves in terms of circuitry, the conductors in each half being connected to each other in series. With regard to each coil, a first amplifier receives an electrical signal from the first conductor half and outputs to a second amplifier a voltage signal proportional to the AC magnetic flux through the coil. The second amplifier inputs a current signal to the second conductor half so as to render nonexistent the first amplifier's output voltage signal.
    • 由电气装置产生的电磁场通过电线圈的三维结构被电磁消除,这些构造一起提供具有至少六个侧面/面的盒状外壳。 通过垂直于每个侧面/面的零磁通的物理发生来实现电磁场的电磁容纳。 至少一个线圈与盒状外壳的每个侧面/面对应地定位。 每个线圈具有一组在电路上分成两半的导体,每个导体在每一半中串联连接。 对于每个线圈,第一放大器接收来自第一导体半部的电信号,并将与通过线圈的AC磁通成比例的电压信号输出到第二放大器。 第二放大器将电流信号输入到第二导体一半,以便不存在第一放大器的输出电压信号。
    • 10. 发明授权
    • Roll frequency dependency correction to control magnetic ship signatures
    • 滚动频率依赖校正来控制磁性船舶签名
    • US08584586B1
    • 2013-11-19
    • US13100059
    • 2011-05-03
    • Donald E. PugsleyJohn J. HolmesRobert W. Schuler
    • Donald E. PugsleyJohn J. HolmesRobert W. Schuler
    • B63G9/06
    • B63G9/06H01F13/00
    • The present invention provides three different algorithms, namely, the “divide and conquer” algorithm, the “Hiddensee compensation” algorithm, and the “impulse response” algorithm. Any one of these three inventive algorithms may be made a part of an overall degaussing algorithm for a marine vessel. Each corrective algorithm, by itself, compensates for deviation of the vessel's induced signature from direct, linear proportionality to the ambient magnetic field. This deviation is associated with the dependency of a marine vessel's magnetic signature on the frequency at which the vessel rolls in the water. Practice of inventive compensation tends to be increasingly called for with increasing magnetic character of the vessel.
    • 本发明提供了三种不同的算法,即“划分和征服”算法,“Hiddensee补偿”算法和“脉冲响应”算法。 这三种创造性算法中的任何一种可以被制成用于海洋船舶的整体消磁算法的一部分。 每个校正算法本身都补偿了船只的诱发签名与环境磁场的直接,线性比例的偏差。 这种偏差与海洋船舶的磁性签名对船舶在水中滚动的频率有关。 随着船舶磁性的增加,创造性补偿的实践往往越来越多。