会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • Machine and operating environment diagnostics, detection and profiling using sound
    • 机器和操作环境诊断,使用声音的检测和分析
    • US20070256499A1
    • 2007-11-08
    • US11408770
    • 2006-04-21
    • Jason PelecanosDouglas HeintzmanJiri NavratilGanesh Ramaswamy
    • Jason PelecanosDouglas HeintzmanJiri NavratilGanesh Ramaswamy
    • G01H13/00
    • G01H1/00
    • A method, system and program storage device are provided for machine diagnostics, detection and profiling using pressure waves, the method including profiling known sources, acquiring pressure wave data, analyzing the acquired pressure wave data, and detecting if the analyzed pressure wave data matches a profiled known source; the system including a processor, a pressure wave transducer in signal communication with the processor, a pressure wave analysis unit in signal communication with the processor, and a source or threat detection unit in signal communication with the processor; and the program storage device including program steps for profiling known sources, acquiring pressure wave data, analyzing the acquired pressure wave data, and detecting if the analyzed pressure wave data matches a profiled known source.
    • 提供了一种方法,系统和程序存储装置,用于使用压力波的机器诊断,检测和轮廓,该方法包括对已知源进行分析,获取压力波数据,分析获取的压力波数据,以及检测分析的压力波数据是否匹配 剖析已知来源; 所述系统包括处理器,与所述处理器进行信号通信的压力波换能器,与所述处理器进行信号通信的压力波分析单元,以及与所述处理器进行信号通信的源或威胁检测单元; 程序存储装置包括用于对已知源进行分析的程序步骤,获取压力波数据,分析获取的压力波数据,以及检测所分析的压力波数据是否与分析的已知来源相匹配。
    • 7. 发明申请
    • Model Adaptation System and Method for Speaker Recognition
    • 扬声器识别模型适应系统及方法
    • US20080208581A1
    • 2008-08-28
    • US10581227
    • 2004-12-03
    • Jason PelecanosSubramanian SridharanRobert Vogt
    • Jason PelecanosSubramanian SridharanRobert Vogt
    • G10L17/00
    • G10L17/04
    • A system and method for speaker recognition speaker modelling whereby prior speaker information is incorporated into the modelling process, utilising the maximum a posteriori (MAP) algorithm and extending it to contain prior Gaussian component correlation information. Firstly a background model (10) is estimated. Pooled acoustic reference data (11) relating to a specific demographic of speakers (population of interest) from a given total population is then trained via the Expectation Maximization (EM) algorithm (12) to produce a background model (13). The background model (13) is adapted utilising information from a plurality of reference speakers (21) in accordance with the Maximum A Posteriori (MAP) criterion (22). Utilizing MAP estimation technique, the reference speaker data and prior information obtained from the background model parameters are combined to produce a library of adapted speaker models, namely Gaussian Mixture Models (23).
    • 一种用于说话者识别扬声器建模的系统和方法,其中先前的说话者信息被并入到建模过程中,利用最大后验(MAP)算法并将其扩展为包含先前的高斯分量相关信息。 首先估计一个背景模型(10)。 然后通过期望最大化(EM)算法(12)训练与给定总人口的特定人群(兴趣人群)有关的汇集的声学参考数据(11)以产生背景模型(13)。 背景模型(13)根据最大后验(最大后验)(MAP)标准(22)利用来自多个参考扬声器(21)的信息。 利用MAP估计技术,将从背景模型参数获得的参考说话者数据和先验信息相结合,以产生适应的说话者模型库,即高斯混合模型(23)。