会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Arbitration of window swap operations
    • 窗口交换操作的仲裁
    • US07426630B1
    • 2008-09-16
    • US10881151
    • 2004-06-30
    • Jike ChongRobert T. GollaPaul J. Jordan
    • Jike ChongRobert T. GollaPaul J. Jordan
    • G06F7/38G06F9/00G06F9/44G06F15/00
    • G06F9/3851G06F9/30116G06F9/3012G06F9/30127
    • In one embodiment, a processor comprises a register file, register management logic coupled to the register file, and at least two sources of window swap operations coupled to the register management logic. The register management logic is configured to control an interface to the register file to switch register windows in the register file in response to one or more window swap operations. The sources of window swap operations and the register management logic are configured to cooperate according to an arbitration scheme to arbitrate between conflicting window swap operations to be performed using the interface. In one particular implementation, for example, block signals may be used from higher priority sources to lower priority sources to block issuance of window swap operations by the lower priority sources.
    • 在一个实施例中,处理器包括寄存器文件,耦合到寄存器文件的寄存器管理逻辑以及耦合到寄存器管理逻辑的至少两个窗口交换源。 寄存器管理逻辑被配置为响应于一个或多个窗口交换操作来控制寄存器文件的接口来切换寄存器文件中的寄存器窗口。 窗口交换操作的来源和寄存器管理逻辑被配置为根据仲裁方案进行协作以在使用该接口执行的冲突的窗口交换操作之间进行仲裁。 在一个特定实现中,例如,可以使用块信号从较高优先级源降低优先级源,以阻止较低优先级源发出窗口交换操作。
    • 2. 发明授权
    • Method and system for parallel statistical inference on highly parallel platforms
    • 高度并行平台并行统计推理的方法与系统
    • US08566259B2
    • 2013-10-22
    • US12876898
    • 2010-09-07
    • Jike ChongYoungmin YiEkaterina I. Gonina
    • Jike ChongYoungmin YiEkaterina I. Gonina
    • G06N5/00
    • G06N99/005
    • Methods for faster statistical inference in computation based recognition problems on highly parallel processors with multiple cores on-a-chip are disclosed, which include: selectively flattening levels of the recognition network to improve inference speed (improving the recognition model); selectively duplicating parts of the recognition network to minimize a critical section in atomic accesses to as few as one atomic instruction (improving the recognition procedure); and combining weight and source port into one 32-bit word to minimize the number of atomic operations. These methods have been implemented on an NVIDIA GTX 280 processor in a Large Vocabulary Continuous Speech Recognition (LVCSR) embodiment, and achieve more than a 10× speed up compared to a highly optimized sequential implementation on an Intel Core i7 processor.
    • 公开了一种在片上具有多个芯片的高度并行处理器上基于计算的识别问题的统计推理的方法,其中包括:选择性地平坦化识别网络的级别,以提高推理速度(提高识别模型); 选择性地复制识别网络的部分以使原子访问中的关键部分最小化到少至一个原子指令(改善识别过程); 并将权重和源端口组合成一个32位字以最小化原子操作的数量。 这些方法已经在大型词汇连续语音识别(LVCSR)实施例中的NVIDIA GTX 280处理器上实现,并且与Intel Core i7处理器上的高度优化的顺序实现相比,实现了超过10倍的速度。
    • 3. 发明申请
    • METHOD AND SYSTEM FOR PARALLEL STATISTICAL INFERENCE ON HIGHLY PARALLEL PLATFORMS
    • 高平行平台平行统计学方法与系统
    • US20110066578A1
    • 2011-03-17
    • US12876898
    • 2010-09-07
    • Jike ChongYoungmin YiEkaterina I. Gonina
    • Jike ChongYoungmin YiEkaterina I. Gonina
    • G06F15/18G06N5/04
    • G06N99/005
    • Methods for faster statistical inference in computation based recognition problems on highly parallel processors with multiple cores on-a-chip are disclosed, which include: selectively flattening levels of the recognition network to improve inference speed (improving the recognition model); selectively duplicating parts of the recognition network to minimize a critical section in atomic accesses to as few as one atomic instruction (improving the recognition procedure); and combining weight and source port into one 32-bit word to minimize the number of atomic operations. These methods have been implemented on an NVIDIA GTX 280 processor in a Large Vocabulary Continuous Speech Recognition (LVCSR) embodiment, and achieve more than a 10× speed up compared to a highly optimized sequential implementation on an Intel Core i7 processor.
    • 公开了一种在片上具有多个芯片的高度并行处理器上基于计算的识别问题的统计推理的方法,其中包括:选择性地平坦化识别网络的级别,以提高推理速度(提高识别模型); 选择性地复制识别网络的部分以使原子访问中的关键部分最小化到少至一个原子指令(改善识别过程); 并将权重和源端口组合成一个32位字以最小化原子操作的数量。 这些方法已经在大型词汇连续语音识别(LVCSR)实施例中的NVIDIA GTX 280处理器上实现,并且与Intel Core i7处理器上的高度优化的顺序实现相比,实现了超过10倍的速度。