会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Managing network traffic for improved availability of network services
    • 管理网络流量,提高网络服务的可用性
    • US08095635B2
    • 2012-01-10
    • US12176539
    • 2008-07-21
    • Jia WangZihui GeHongbo JiangShudong JinAndrew W. Moore
    • Jia WangZihui GeHongbo JiangShudong JinAndrew W. Moore
    • G06F13/00
    • H04L43/026H04L41/142H04L41/16H04L43/022H04L43/045
    • Managing network traffic to improve availability of network services by classifying network traffic flows using flow-level statistical information and machine learning estimation, based on a measurement of at least one of relevance and goodness of network features. Also, determining a network traffic profile representing applications associated with the classified network traffic flows, and managing network traffic using the network traffic profile. The flow-level statistical information includes packet-trace information and is available from at least one of Cisco NetFlow, NetStream or cflowd records. The classification of network flows includes tagging packet-trace flow record data based on defined packet content information. The classifying of network flows can result in the identification of a plurality of clusters based on the measurement of the relevance of the network features. Also, the classification of network traffic can use a correlation-based measure to determine the goodness of the network features.
    • 基于网络特征的相关性和良好性的至少一个的测量,通过使用流量统计信息和机器学习估计来分类网络流量流来管理网络流量以提高网络服务的可用性。 此外,确定表示与分类网络业务流相关联的应用的网络流量简档,以及使用网络流量简档来管理网络流量。 流级统计信息包括分组跟踪信息,并且可以从Cisco NetFlow,NetStream或cflowd记录中的至少一个获得。 网络流的分类包括基于定义的分组内容信息来标记分组跟踪流记录数据。 网络流的分类可以基于网络特征的相关性的测量来导致多个聚类的识别。 此外,网络流量的分类可以使用基于相关的度量来确定网络特征的良好性。
    • 2. 发明申请
    • Lightweight Application Classification for Network Management
    • 网络管理轻量级应用分类
    • US20100014420A1
    • 2010-01-21
    • US12176539
    • 2008-07-21
    • Jia WangZihui GeHongbo JiangShudong JinAndrew W. Moore
    • Jia WangZihui GeHongbo JiangShudong JinAndrew W. Moore
    • H04L12/24
    • H04L43/026H04L41/142H04L41/16H04L43/022H04L43/045
    • Managing network traffic to improve availability of network services by classifying network traffic flows using flow-level statistical information and machine learning estimation, based on a measurement of at least one of relevance and goodness of network features. Also, determining a network traffic profile representing applications associated with the classified network traffic flows, and managing network traffic using the network traffic profile. The flow-level statistical information includes packet-trace information and is available from at least one of Cisco NetFlow, NetStream or cflowd records. The classification of network flows includes tagging packet-trace flow record data based on defined packet content information. The classifying of network flows can result in the identification of a plurality of clusters based on the measurement of the relevance of the network features. Also, the classification of network traffic can use a correlation-based measure to determine the goodness of the network features.
    • 基于网络特征的相关性和良好性的至少一个的测量,通过使用流量统计信息和机器学习估计来分类网络流量流来管理网络流量以改善网络服务的可用性。 此外,确定表示与分类网络业务流相关联的应用的网络流量简档,以及使用网络流量简档来管理网络流量。 流级统计信息包括分组跟踪信息,并且可以从Cisco NetFlow,NetStream或cflowd记录中的至少一个获得。 网络流的分类包括基于定义的分组内容信息来标记分组跟踪流记录数据。 网络流的分类可以基于网络特征的相关性的测量来导致多个聚类的识别。 此外,网络流量的分类可以使用基于相关的度量来确定网络特征的良好性。
    • 3. 发明申请
    • Measurement-Based Validation of a Simple Model for Panoramic Profiling of Subnet-Level Network Data Traffic
    • 基于测量的验证子网级数据流量全景分析的简单模型
    • US20100034102A1
    • 2010-02-11
    • US12186113
    • 2008-08-05
    • Jia WangZihui GeHongbo JiangShudong Jin
    • Jia WangZihui GeHongbo JiangShudong Jin
    • H04L12/26
    • H04L43/0876H04L41/0213H04L41/0893
    • A system and method for profiling subnet-level aggregate network data traffic is disclosed. The system allows a user to define a collection of features that combined characterize the subnet-level aggregate traffic behavior. Preferably, the features include daily traffic volume, time-of-day behavior, spatial traffic distribution, traffic balance in flow direction, and traffic distribution in type of application. The system then applies machine learning techniques to classify the subnets into a number of clusters on each of the features, by assigning a membership probability vector to each network thus allowing panoramic traffic profiles to be created for each network on all features combined. These membership probability vectors may optionally be used to detect network anomalies, or to predict future network traffic.
    • 公开了一种用于分析子网级聚合网络数据流量的系统和方法。 该系统允许用户定义组合的特征集合,以表征子网级聚合流量行为。 优选地,特征包括日常交通量,时间行为,空间流量分配,流向方向上的流量平衡以及应用类型中的流量分布。 然后,该系统应用机器学习技术,通过向每个网络分配成员概率向量,从而允许在组合的所有特征上为每个网络创建全景业务简档,从而将子网分类为每个特征上的多个集群。 这些成员概率向量可以可选地用于检测网络异常,或者预测未来的网络流量。