会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • Automated Contextual Information Retrieval Based on Multi-Tiered User Modeling and Dynamic Retrieval Strategy
    • 基于多层次用户建模和动态检索策略的自动上下文信息检索
    • US20120209871A1
    • 2012-08-16
    • US13024467
    • 2011-02-10
    • Jennifer LaiJie LuShimei PanZhen Wen
    • Jennifer LaiJie LuShimei PanZhen Wen
    • G06F17/30
    • G06F17/30997H04L51/02
    • Automated contextual information retrieval techniques are provided based on multi-tiered user modeling and a dynamic retrieval strategy. Content relevant to a current message is presented by initially obtaining a multi-tiered user model containing a multi-tiered representation of interactions of a first user with each contact, wherein the multi-tiered representation includes a plurality of topic models each corresponding to interactions between the first user and one contact. The topic models contain a set of topics, each containing topic keywords. Context information is extracted based on content of the current message, a sender and/or a recipient of the current message, and the multi-tiered user model. A retrieval strategy is determined based on the extracted context information. Contextual queries are generated to search the information repositories selected based on the determined retrieval strategy. Content relevant to the current message is presented based on search results from the selected information repositories.
    • 基于多层次用户建模和动态检索策略提供了自动上下文信息检索技术。 通过最初获得包含第一用户与每个联系人的交互的多层次表示的多层次用户模型来呈现与当前消息相关的内容,其中所述多层表示包括多个主题模型,每个主题模型对应于 第一个用户和一个联系人。 主题模型包含一组主题,每个主题包含主题关键字。 基于当前消息的内容,当前消息的发送者和/或接收者以及多层次用户模型来提取上下文信息。 基于提取的上下文信息确定检索策略。 生成上下文查询以搜索基于确定的检索策略选择的信息库。 基于所选信息存储库的搜索结果显示与当前消息相关的内容。
    • 6. 发明授权
    • Multi-tiered approach to E-mail prioritization
    • 多层次的电子邮件优先排序方法
    • US09256862B2
    • 2016-02-09
    • US13528598
    • 2012-06-20
    • Jennifer C. LaiJie LuShimei PanZhen Wen
    • Jennifer C. LaiJie LuShimei PanZhen Wen
    • G06F15/18G06Q10/10
    • G06Q10/107
    • A method of automating incoming message prioritization. The method including training a global classifier of a computer system using training data. Dynamically training a user-specific classifier of the computer system based on a plurality of feedback instances. Inferring a topic of the incoming message received by the computer system based on a topic-based user model. Computing a plurality of contextual features of the incoming message. Determining a priority classification strategy for assigning a priority level to the incoming message based on the computed contextual features of the incoming message and a weighted combination of the global classifier and the user specific classifier. Classifying the incoming message based on the priority classification strategy.
    • 一种自动传入消息优先级的方法。 该方法包括使用训练数据训练计算机系统的全局分类器。 基于多个反馈实例动态训练计算机系统的用户专用分类器。 基于基于主题的用户模型推断计算机系统接收到的传入消息的主题。 计算传入消息的多个上下文特征。 确定用于基于输入消息的计算的上下文特征以及全局分类器和用户特定分类器的加权组合来为入局消息分配优先级的优先级分类策略。 根据优先级分类策略对传入的消息进行分类。
    • 7. 发明申请
    • MULTI-TIERED APPROACH TO E-MAIL PRIORITIZATION
    • 电子邮件优先的多层次的方法
    • US20130339276A1
    • 2013-12-19
    • US13528598
    • 2012-06-20
    • Jennifer C. LaiJie LuShimei PanZhen Wen
    • Jennifer C. LaiJie LuShimei PanZhen Wen
    • G06F15/18
    • G06Q10/107
    • A method of automating incoming message prioritization. The method including training a global classifier of a computer system using training data. Dynamically training a user-specific classifier of the computer system based on a plurality of feedback instances. Inferring a topic of the incoming message received by the computer system based on a topic-based user model. Computing a plurality of contextual features of the incoming message. Determining a priority classification strategy for assigning a priority level to the incoming message based on the computed contextual features of the incoming message and a weighted combination of the global classifier and the user specific classifier. Classifying the incoming message based on the priority classification strategy.
    • 一种自动传入消息优先级的方法。 该方法包括使用训练数据训练计算机系统的全局分类器。 基于多个反馈实例动态训练计算机系统的用户专用分类器。 基于基于主题的用户模型推断计算机系统接收到的传入消息的主题。 计算传入消息的多个上下文特征。 确定用于基于输入消息的计算的上下文特征以及全局分类器和用户特定分类器的加权组合来为入局消息分配优先级的优先级分类策略。 根据优先级分类策略对传入的消息进行分类。
    • 8. 发明申请
    • MULTI-TIERED APPROACH TO E-MAIL PRIORITIZATION
    • 电子邮件优先的多层次的方法
    • US20130212047A1
    • 2013-08-15
    • US13525173
    • 2012-06-15
    • Jennifer C. LaiJie LuShimei PanZhen Wen
    • Jennifer C. LaiJie LuShimei PanZhen Wen
    • G06F15/18
    • G06Q10/107G06N5/00
    • An apparatus for automating a prioritization of an incoming message, including a batch learning module that generates a global classifier based on training data that is input to the batch learning module. A feedback learning module that generates a user-specific classifier based on a plurality of feedback instances. A feature extraction module that receives the incoming message and a topic-based user model, infers a topic of the incoming message based on the topic-based user model, and computes a plurality of contextual features of the incoming message. A classification module that dynamically determines a priority classification strategy for assigning a priority level to the incoming message based on the plurality of contextual features of the incoming message and a weighted combination of the global classifier and the user-specific classifier, and classifies the incoming message based on the priority classification strategy.
    • 一种用于自动化进入消息的优先级的装置,包括基于输入到批量学习模块的训练数据生成全局分类器的批量学习模块。 反馈学习模块,其基于多个反馈实例生成用户特定的分类器。 一种特征提取模块,其接收所述传入消息和基于主题的用户模型,基于所述基于所述主题的用户模型推断所述传入消息的主题,并且计算所述传入消息的多个上下文特征。 一种分类模块,其基于所述输入消息的所述多个上下文特征以及所述全局分类器和所述用户特定分类器的加权组合来动态地确定用于向所述传入消息分配优先级的优先级分类策略,并且对所述传入消息进行分类 基于优先级分类策略。
    • 9. 发明授权
    • Multi-tiered approach to E-mail prioritization
    • 多层次的电子邮件优先排序方法
    • US09152953B2
    • 2015-10-06
    • US13525173
    • 2012-06-15
    • Jennifer C. LaiJie LuShimei PanZhen Wen
    • Jennifer C. LaiJie LuShimei PanZhen Wen
    • G06F15/18G06Q10/10G06N5/00
    • G06Q10/107G06N5/00
    • An apparatus for automating a prioritization of an incoming message, including a batch learning module that generates a global classifier based on training data that is input to the batch learning module. A feedback learning module that generates a user-specific classifier based on a plurality of feedback instances. A feature extraction module that receives the incoming message and a topic-based user model, infers a topic of the incoming message based on the topic-based user model, and computes a plurality of contextual features of the incoming message. A classification module that dynamically determines a priority classification strategy for assigning a priority level to the incoming message based on the plurality of contextual features of the incoming message and a weighted combination of the global classifier and the user-specific classifier, and classifies the incoming message based on the priority classification strategy.
    • 一种用于自动化进入消息的优先级的装置,包括基于输入到批量学习模块的训练数据生成全局分类器的批量学习模块。 反馈学习模块,其基于多个反馈实例生成用户特定的分类器。 一种特征提取模块,其接收所述传入消息和基于主题的用户模型,基于所述基于所述主题的用户模型推断所述传入消息的主题,并且计算所述传入消息的多个上下文特征。 一种分类模块,其基于所述输入消息的所述多个上下文特征以及所述全局分类器和所述用户特定分类器的加权组合来动态地确定用于向所述传入消息分配优先级的优先级分类策略,并且对所述传入消息进行分类 基于优先级分类策略。