会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Polarization analysis unit, calibration method and optimization therefor
    • 极化分析单元,校准方法及优化
    • US06816261B2
    • 2004-11-09
    • US10146228
    • 2002-05-14
    • Jayantilal S. PatelZhizhong ZhuangJohn A. Yeazell
    • Jayantilal S. PatelZhizhong ZhuangJohn A. Yeazell
    • G01J400
    • G01J4/04G01J3/447G01J4/00G01M11/331
    • Measurements at multiple distinct polarization measurement states are taken to define the polarization state of an input, for example to calculate a Stokes vector. High accuracy and/or capability of frequent recalibration are needed, due to the sensitivity of measurement to retardation of the input signal. A multiple measurement technique takes a set of spatially and/or temporally distinct intensity measurements through distinct waveplates and polarizers. These can be optimized as to orientation and retardation using initial choices and also using tunable elements, especially controllable birefringence elements. A device matrix defines the response of the device at each of the measurement states. The matrix can be corrected using an iterative technique to revise the device matrix, potentially by automated recalibration. Two input signals (or preferably the same signal before and after a polarization transform) that are known to have a common polarization attribute or other attribute relationship are measured and the common attribute and/or attribute relationship is derived for each and compared. The device matrix is revised, for example by iterative correction or by random search of candidates to improve the accuracy of the device matrix. Optional tunable spectral and temporal discrimination provide additional functions.
    • 采用多个不同极化测量状态的测量来定义输入的偏振状态,例如计算斯托克斯矢量。 由于测量对输入信号的延迟的敏感性,需要高精度和/或频繁重新校准的能力。 多重测量技术通过不同的波片和偏振器采取一组空间和/或时间上不同的强度测量。 可以使用初始选择以及使用可调谐元件,特别是可控双折射元件来定向和延迟这些。 器件矩阵定义了器件在每个测量状态下的响应。 可以使用迭代技术校正矩阵,以便通过自动重新校准来修改器件矩阵。 测量已知具有共同极化属性或其他属性关系的两个输入信号(或优选地,在偏振变换之前和之后的相同信号),并且为每个并且进行比较导出公共属性和/或属性关系。 修改设备矩阵,例如通过迭代校正或通过随机搜索候选来改进设备矩阵的准确性。 可选的可调谐光谱和时间辨别提供附加功能。
    • 3. 发明授权
    • Distributed fiber sensor with detection and signal processing using polarization state management
    • 分布式光纤传感器,具有使用偏振状态管理的检测和信号处理
    • US07139476B2
    • 2006-11-21
    • US10911326
    • 2004-08-04
    • Jayantilal S. PatelZhizhong ZhuangYuri Zadorozhny
    • Jayantilal S. PatelZhizhong ZhuangYuri Zadorozhny
    • H04B10/08
    • G01M11/39H04B10/00
    • Polarization effects are managed to provide differential timing information for localizing disturbances affecting two or more counter-propagating light signals on one or more optical waveguides passing through a detection zone. Activity can be localized to a point for a security perimeter. Events causing optical disturbance can be mapped to points along a straight line, a perimeter or arbitrary pattern or an array. Events cause local changes in optical properties in the optical waveguide, in particular an optical fiber. Short term local changes are distinguishable from phase changes of light travel in the waveguide, by managing the polarization state of input and output beams, combining orthogonal polarization components and other aspects. The changes in the states of polarization of the counter-propagating light signals are determined and the temporal spacing of corresponding changes in polarization state are resolved to pinpoint the location of the event along the optical fiber.
    • 管理极化效应以提供差分定时信息,用于定位影响通过检测区域的一个或多个光波导上的两个或多个反向传播光信号的干扰。 活动可以本地化到安全边界的一个点。 导致光学干扰的事件可以映射到沿直线,周边或任意图案或阵列的点。 事件导致光波导中光学特性的局部变化,特别是光纤。 通过管理输入和输出光束的偏振状态,组合正交偏振分量和其他方面,短期局部变化可以与波导中光行进的相位变化区别开来。 确定反向传播光信号的极化状态的变化,并且解决极化状态中相应变化的时间间隔,以确定事件沿光纤的位置。
    • 4. 发明授权
    • Polarization encoder device
    • 极化编码器装置
    • US07127179B2
    • 2006-10-24
    • US10013262
    • 2001-12-10
    • Jayantilal S. PatelZhizhong Zhuang
    • Jayantilal S. PatelZhizhong Zhuang
    • H04B10/00
    • H04B10/532G02B6/266G02F1/21G02F2203/48H04J14/02
    • A optical polarization encoding device (16) provides wavelength dependent processing of polychromatic optical signals without prior separation into narrow wavelength bands. Embodiments of the encoding device include a wavelength dependent tunable optical switch (400, 500) and a wavelength tunable optical level controller (600). An encoded signal is processed, (e.g., rerouted or attenuated), as a function of wavelength using polarization dependent devices (18). Desired states of polarization are imparted to optical signals to either direct selected wavelengths to selected output ports (optical switch), or to adjust the level of selected channels or wavelengths (level controller). Desired polarizations are achieved simultaneously at all wavelengths contained within the incoming signal by independently varying the birefringence and/or crystallographic orientation of each variable element within the stack.
    • 光偏振编码装置(16)提供多色光信号的波长相关处理,而无需事先分离成窄波段。 编码装置的实施例包括波长依赖的可调谐光开关(400,500)和波长可调光学电平控制器(600)。 使用偏振相关设备(18),编码信号作为波长的函数被处理(例如,重新路由或衰减)。 将期望的极化状态赋予光信号,以将选择的波长指向所选择的输出端口(光开关),或调整所选择的通道或波长(电平控制器)的电平。 通过独立地改变堆叠内的每个可变元件的双折射和/或晶体取向,在输入信号中包含的所有波长下同时实现期望的偏振。
    • 6. 发明授权
    • Narrow band polarization encoder
    • US06611342B2
    • 2003-08-26
    • US09952570
    • 2001-09-14
    • Jayantilal S. PatelZhizhong Zhuang
    • Jayantilal S. PatelZhizhong Zhuang
    • G01B902
    • G01D5/345G02F1/216
    • An interferometer optical element is provided with a birefringent material in the light path. Specifically, a Fabry-Perot optical resonance cavity is operated in a fully reflective mode and is provided with a birefringent material in a cavity between two reflectors. A first mirror, for example of about 90% reflectance and a second mirror, for example of 99% reflectance, define the cavity. The polarization effect is applied exclusively to the resonant wavelength defined by the spacing of the two reflectors. The input beam is fully reflected back in the direction of incidence. However the resonant wavelength component therein is polarized and can be discriminated, e.g., selectively diverted by a polarization beam splitter. A number of application are disclosed, including using a birefringent liquid crystal material and tuning the apparent optical path length by electrically adjusting the birefringence. The device also is cascadable for selectively operating on certain wavelengths and diversely polarizing some wavelengths and not others. In a preferred embodiment, the input beam is applied at 45 degrees to the fast axis of oriented birefringent nematic liquid crystal, which can optionally involve separately altering and recombining diverse polarization components of the input beam.
    • 7. 发明申请
    • DETECTION AND LOCATION OF BOUNDARY INTRUSION, USING COMPOSITE VARIABLES DERIVED FROM PHASE MEASUREMENTS
    • 使用从相位测量得到的复合变量的边界入侵检测和位置
    • US20100014095A1
    • 2010-01-21
    • US12438877
    • 2007-08-29
    • Jayantilal S. PatelZhizhong ZhuangYuri ZadorozhnyFrancesco A. Annetta
    • Jayantilal S. PatelZhizhong ZhuangYuri ZadorozhnyFrancesco A. Annetta
    • G01B9/02
    • G08B13/186
    • A disturbance, such as vibration from human activity, is located along a fiberoptic waveguide configuration (301-304) with two interferometers (801, 802) of the same or different types, such as Mach-Zehnder, Sagnac, and Michelson interferometers. Carrier signals from a source (101) are split at the interferometer inputs (201, 202) and re-combined at the outputs (701, 702) after propagating through the detection zone (401), where phase variations are induced by the disturbance (501). Phase responsive receivers (901, 902) detect phase relationships (1001, 1002) between the carrier signals over time. A processor (1101) combines the phase relationships into composite signals according to equations that differ for different interferometer configurations, with a time lag between or a ratio of the composite signals representing the location of the disturbance. The detected and composite values are unbounded, permitting phase displacement to exceed the carrier period and allowing disturbances of variable magnitudes to be located.
    • 沿着具有相同或不同类型的两个干涉仪(801,802)的光纤波导配置(301-304)位于诸如Mach-Zehnder,Sagnac和Michelson干涉仪之间的干扰,例如来自人类活动的振动。 来自源(101)的载波信号在干涉仪输入(201,202)处被分离,并且在传播通过检测区(401)之后在输出(701,702)处重新组合,其中相位变化由干扰引起 501)。 相位响应接收器(901,902)检测载波信号随时间的相位关系(1001,1002)。 处理器(1101)根据对不同干涉仪配置不同的方程将相位关系组合成复合信号,其中表示干扰位置的复合信号之间的时间间隔或比率。 检测和复合值是无限制的,允许相位位移超过载波周期,并允许定位可变幅度的干扰。
    • 9. 发明授权
    • Optical power limiting control
    • US06606181B2
    • 2003-08-12
    • US09994419
    • 2001-11-27
    • Jayantilal S. PatelZhizhong Zhuang
    • Jayantilal S. PatelZhizhong Zhuang
    • G02F101
    • G02F1/21G02B6/266G02F2203/48
    • A controllable phase plate has numerous domains that are randomized as to the orientation of their birefringence and can be used in a power limiting control to produces an electrically controllable diffraction pattern having a portion, especially the zero mode axial spot of the pattern, that is directed onto an output aperture such as a pinhole or an optical fiber end. Controlling the phase plate produces an interference peak or null (or an intermediate level) of light, coupled into the output aperture. The phase plate preferably comprises a liquid crystal with controllable birefringence. The domains have paired orthogonal orientations, which is a condition that is met in randomized domains. The paired orthogonal orientations make the device polarization insensitive. In a controllable attenuating device, collimating lenses are placed before and after the phase plate along a beam path to focus a clear interference pattern on a screen containing the output aperture. Several variations are disclosed including an electrically controllable phase plate arrangement using liquid crystal controllably birefringent material prepared in a polarization insensitive manner in zones, or preferably by providing random director orientation in a plane.
    • 10. 发明授权
    • Detection and location of boundary intrusion, using composite variables derived from phase measurements
    • 边界入侵的检测和定位,使用从相位测量得出的复合变量
    • US08395782B2
    • 2013-03-12
    • US12438877
    • 2007-08-29
    • Jayantilal S. PatelZhizhong ZhuangYuri ZadorozhnyFrancesco A. Annetta
    • Jayantilal S. PatelZhizhong ZhuangYuri ZadorozhnyFrancesco A. Annetta
    • G01B9/02
    • G08B13/186
    • A disturbance, such as vibration from human activity, is located along a fiberoptic waveguide configuration (301-304) with two interferometers (801, 802) of the same or different types, such as Mach-Zehnder, Sagnac, and Michelson interferometers. Carrier signals from a source (101) are split at the interferometer inputs (201, 202) and re-combined at the outputs (701, 702) after propagating through the detection zone (401), where phase variations are induced by the disturbance (501). Phase responsive receivers (901, 902) detect phase relationships (1001, 1002) between the carrier signals over time. A processor (1101) combines the phase relationships into composite signals according to equations that differ for different interferometer configurations, with a time lag between or a ratio of the composite signals representing the location of the disturbance. The detected and composite values are unbounded, permitting phase displacement to exceed the carrier period and allowing disturbances of variable magnitudes to be located.
    • 沿着具有相同或不同类型的两个干涉仪(801,802)的光纤波导配置(301-304)位于诸如Mach-Zehnder,Sagnac和Michelson干涉仪之间的干扰,例如来自人类活动的振动。 来自源(101)的载波信号在干涉仪输入(201,202)处被分离,并且在传播通过检测区(401)之后在输出(701,702)处重新组合,其中相位变化由干扰引起 501)。 相位响应接收器(901,902)检测载波信号随时间的相位关系(1001,1002)。 处理器(1101)根据对不同干涉仪配置不同的方程将相位关系组合成复合信号,其中表示干扰位置的复合信号之间的时间间隔或比率。 检测和复合值是无限制的,允许相位位移超过载波周期,并允许定位可变幅度的干扰。