会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • Parallel volume rendering system with a resampling module for parallel and perspective projections
    • 具有用于并行和透视投影的重采样模块的并行体绘制系统
    • US06313841B1
    • 2001-11-06
    • US09059155
    • 1998-04-13
    • Masato OgataTakaHide OhkamiHugh C. Lauer
    • Masato OgataTakaHide OhkamiHugh C. Lauer
    • G06T1700
    • G06T15/10
    • A volume rendering system re-samples voxels read from a voxel memory to generate samples along perspective rays cast from a center of projection using a level of detail value. Color computations are performed with the samples to produce pixels for a baseplane image. The level of detail is computed, at each plane of samples perpendicular to a principal viewing axis, from the current sample position and the distance between the center of projection and the baseplane; the principal viewing axis is the coordinate axis in a rendered volume most parallel with a viewing vector. The level of detail provides a measure of the distance between two neighboring perspective rays at each plane and is used to determine the number of voxels and weights for these voxels required to compute a single sample at each plane. Multi-resolution datasets prepared for different levels of details are used to simplify the resampling operation by limiting the number of voxels required to compute a single sample.
    • 体绘制系统重新对从体元记忆读取的体素进行重新采样,以使用一定程度的细节值从投影中心投射的透视光线生成样本。 使用样本执行颜色计算,以生成基板图像的像素。 在垂直于主观察轴的样本的每个平面处,从当前采样位置和投影中心与基板之间的距离计算细节水平; 主观察轴是与观看向量最平行的渲染卷中的坐标轴。 细节水平提供了每个平面上两个相邻透视射线之间的距离的度量,并且用于确定在每个平面处计算单个样本所需的这些体素的体素数和权重。 用于不同级别细节的多分辨率数据集用于通过限制计算单个样本所需的体素数来简化重采样操作。
    • 8. 发明授权
    • Method for rendering sections of a volume data set
    • 渲染卷数据集的部分的方法
    • US06262740B1
    • 2001-07-17
    • US09318430
    • 1999-05-25
    • Hugh C. LauerRandy B. OsborneHanspeter Pfister
    • Hugh C. LauerRandy B. OsborneHanspeter Pfister
    • G06T1700
    • G06T15/08G06T1/60G06T15/005G06T15/40
    • A method renders a volume data set including a plurality of voxels. In the method, a). the volume data set is apportioned into a plurality of sections. Then, b). a first one of the plurality of sections is rendered by sequentially reading groups of voxels from an external memory and rendering the groups of voxels in the section. Then, c). any accumulated data from the rendering of the first one of the plurality of sections is stored in a temporary storage device. Then, a next one of the plurality of sections is rendered by sequentially reading groups of voxels of the next one of the plurality of sections from an external memory and rendering the groups of voxels, the rendering incorporating accumulated data from the temporary storage device, and then any accumulated data from the rendering of the next one of the plurality of sections is stored in the temporary storage device. Steps d and e are repeated until each of the plurality of sections of the volume data set have been rendered.
    • 一种方法呈现包括多个体素的体数据集。 在该方法中,a)。 音量数据集被分配成多个部分。 然后,b)。 通过从外部存储器中依次读取体素组并渲染该部分中的体素组来呈现多个部分中的第一部分。 然后,c)。 来自多个部分中的第一个部分的呈现的任何累积数据被存储在临时存储装置中。 然后,通过从外部存储器顺序地读取多个部分中的下一个部分的体素组,并且渲染结合来自临时存储装置的累积数据的体素组,并渲染多个部分中的下一个部分,以及 那么来自多个部分中的下一个部分的呈现的任何累积数据被存储在临时存储装置中。 重复步骤d和e,直到卷数据集的多个部分中的每一个已被渲染。
    • 10. 发明授权
    • Super-sampling and gradient estimation in a ray-casting volume rendering system
    • 射线投射体绘制系统中的超采样和梯度估计
    • US06483507B2
    • 2002-11-19
    • US09862901
    • 2001-05-22
    • Randy B. OsborneIngmar BitterHanspeter PfisterJames KnittelHugh C. Lauer
    • Randy B. OsborneIngmar BitterHanspeter PfisterJames KnittelHugh C. Lauer
    • G06T1500
    • G06T15/08G06T15/005G06T15/10
    • A volume rendering processor renders a two-dimensional image from a volume data set of voxels constituting a three-dimensional representation of an object. Voxel memory interface logic retrieves the voxels from a voxel memory in a scanned order with respect to X, Y and Z coordinate axes, the Z axis being the axis most nearly parallel to a predefined viewing direction. The set of voxels having equal Z coordinate values are referred to as a “slice” of voxels. Interpolation logic calculates a sequence of samples from the retrieved voxels such that (i) each sample lies along a corresponding imaginary ray extending through the object parallel to the viewing direction, (ii) each sample results from interpolating the eight voxels surrounding the sample in the XYZ coordinate system. “Supersampling” in the Z dimension is performed such that the number of samples calculated for each ray is greater than the number of slices of voxels in the volume data set. Gradient calculation logic calculates for each sample respective gradients in the X, Y and Z directions for use by classification and illumination logic. The X and Y gradients are calculated from the samples emitted by the interpolation logic, and Z gradients are calculated by (i) calculating Z gradients at the voxel positions from voxel values retrieved from memory, and (ii) interpolating the voxel Z gradients to arrive at the Z gradients at the sample positions.
    • 体绘制处理器从构成对象的三维表示的体素数据集合呈现二维图像。 体素存储器接口逻辑以相对于X,Y和Z坐标轴的扫描顺序从体素存储器检索体素,Z轴是最接近平行于预定观察方向的轴。 具有相等Z坐标值的一组体素被称为体素的“切片”。 插值逻辑从所检索的体素计算样本序列,使得(i)每个样本沿着平行于观察方向延伸穿过物体的相应假想射线位于(ii)每个样本由内插样本周围的八个体素 XYZ坐标系。 执行Z维度中的“超采样”,使得针对每个射线计算的样本数量大于体数据集中体素的数量。 梯度计算逻辑计算X,Y和Z方向上每个样本各个梯度的分类和照明逻辑使用的梯度。 由内插逻辑发射的样本计算X和Y梯度,并且(i)通过(i)从存储器检索的体素值计算体素位置处的Z梯度来计算Z梯度,以及(ii)内插体素Z梯度以到达 在Z样品位置的梯度。