会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Non-dissipative current distribution circuit for magnetohydrodynamic
generator electrodes
    • 用于磁流体动力发电机电极的非耗散电流分配电路
    • US4608627A
    • 1986-08-26
    • US746902
    • 1985-06-20
    • James F. Holt
    • James F. Holt
    • H02P13/06H02M3/315H02M3/337
    • H02P13/06
    • A nondissipative current distribution circuit for a power source, such as magnetohydrodynamic generator, that delivers its output current through a first plurality of positive electrodes and a second plurality of negative electrodes (including plural positive and negative electrode pairs) and provides a predetermined current distribution among the electrodes, is described, and comprises a transformer including first and second windings, the second winding including means for connection to a load, the first winding having plural adjustable taps intermediate its ends, an inductor connected at one end to one end of the first transformer winding and at the other end to a plurality of capacitors connected respectively to each electrode, and a first plurality of silicon controlled rectifiers connected, respectively, between each positive electrode and a tap or the second end of the first transformer winding, and a second plurality of silicon controlled rectifiers connected, respectively, between each negative electrode and a tap or the second end of the first transformer winding, the first plurality of rectifiers configured to conduct alternately with the second plurality of rectifiers. In alternative embodiments, mechanical switches are connected between each electrode and tap or winding end, all switches configured to operate in unison, with an RC filter connected across each switch; or a silicon controlled rectifier switch is connected between each electrode and tap or winding end, all switches configured to operate in unison, with a commutating circuit connected across each rectifier switch.
    • 一种用于诸如磁流体动力发生器的电源的无耗散电流分配电路,其通过第一多个正电极和第二多个负极(包括多个正电极对和负电极对)传递其输出电流,并且提供预定的电流分布 电极,并且包括包括第一和第二绕组的变压器,第二绕组包括用于连接到负载的装置,第一绕组在其端部之间具有多个可调节抽头,电感器在一端连接到第一和第二绕组的一端 变压器绕组,另一端连接到分别连接到每个电极的多个电容器,以及分别连接在每个正电极和第一变压器绕组的抽头或第二端之间的第一多个可控硅整流器, 分别连接多个可控硅整流器 衰减每个负电极和第一变压器绕组的抽头或第二端,所述第一多个整流器被配置为与所述第二多个整流器交替地导通。 在替代实施例中,机械开关连接在每个电极和抽头或绕组端之间,所有开关被配置为一致地操作,RC滤波器连接在每个开关上; 或者可控硅整流开关连接在每个电极和抽头或绕组端之间,所有开关配置为一致工作,每个整流开关连接有换向电路。
    • 4. 发明授权
    • Method of bonding protective covers onto solar cells
    • 将保护盖粘合到太阳能电池上的方法
    • US4714510A
    • 1987-12-22
    • US900055
    • 1986-08-25
    • James F. Holt
    • James F. Holt
    • H01L31/048H01L31/18C03C27/02C03C27/10H01L31/00
    • H01L31/18H01L31/048Y02E10/50
    • A method for bonding a protective cover to a solar cell is described comprising the steps of depositing onto a substrate a metallic gridwork corresponding to that which surrounds and defines the active photovoltaic areas of the solar cell; overlaying a protective cover, such as of glass, in contact with the gridwork on the substrate, heating under light pressure to soften the cover and impress the gridwork into a surface of the cover, and removing the cover and gridwork assembly from the substrate; applying a thin metallic adherent layer and, optionally, a compatibility layer on the solar cell in configuration corresponding to that of the intended gridwork of the solar cell; overlaying the cover and gridwork assembly onto the solar cell with the gridwork aligned with the layer(s); and bonding the gridwork to the layer(s).
    • 描述了一种用于将保护盖结合到太阳能电池的方法,包括以下步骤:将与金属栅格相对应的金属栅格沉积到围绕并限定太阳能电池的活性光伏区域的栅极上; 覆盖诸如玻璃的保护盖与基板上的格栅接触,在轻压下加热以软化盖并将格栅压印到盖的表面中,并从基板移除盖和格栅组件; 在与太阳能电池的预期格栅相对应的构造中施加薄金属粘附层和任选地在太阳能电池上的兼容性层; 将盖和格栅组件覆盖在太阳能电池上,其中格栅与层对准; 并将网格结合到该层。
    • 6. 发明授权
    • Enthalpy augmentation to MHD generation
    • 氦气增加MHD生成
    • US4016438A
    • 1977-04-05
    • US581175
    • 1975-05-27
    • James F. Holt
    • James F. Holt
    • H02K44/08H02K45/00
    • H02K44/08
    • An improved magnetohydrodynamic (MHD) generator is provided by increasing the electrical conductivity of the working fluid by raising the temperature of the fluid. This is accomplished by providing an additional source of heat for the combustion products within the combustor. The additional source of heat in the combustor is provided by an electrical arc discharge within the combustor. The arc is energized by feeding back a part of the electrical output power from the MHD generator to the arc electrodes. In a typical nominal 20 megawatt system the thermal efficiency of the system is typically increased from approximately 20% to approximately 24.5% by such enthalpy augmentation.
    • 通过提高流体的温度来提高工作流体的电导率来提供改进的磁流体动力学(MHD)发生器。 这通过为燃烧器内的燃烧产物提供额外的热源来实现。 燃烧器中的额外的热源由燃烧器内的电弧放电提供。 通过将来自MHD发生器的一部分电力输出反馈到电弧电极来使电弧通电。 在典型的标称20兆瓦系统中,通过这种焓增加,系统的热效率通常从大约20%增加到约24.5%。