会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method of making an integrated circuit including noise modeling and
prediction
    • 制造包括噪声建模和预测的集成电路的方法
    • US6072947A
    • 2000-06-06
    • US933733
    • 1997-09-23
    • Jaijeet RoychowdhuryPeter FeldmannDavid Esley Long
    • Jaijeet RoychowdhuryPeter FeldmannDavid Esley Long
    • G06F17/50
    • G06F17/5036
    • A frequency-domain analysis method computes noise power spectral densities (PSDs) in nonlinear circuits. The method uses harmonic components of the periodic time-varying PSD of cyclostationary noise, i.e., harmonic power spectral densities which are deterministic functions that describe the time-varying second-order statistics of cyclostationary noise. A block-structured matrix equation is used which relates output noise statistics to input noise statistics. By exploiting Toeplitz block structure, an efficient noise calculation method requires O(nN log N) computation time and O(nN) memory, where n is the circuit size and N is the number of significant harmonics in the circuit's steady state. The method successfully treats device noise sources with arbitrarily shaped PSDs (including thermal, shot, and flicker noises), handles noise input correlations and computes correlations between different outputs.
    • 频域分析方法计算非线性电路中的噪声功率谱密度(PSD)。 该方法使用循环平稳噪声​​的周期性时变PSD的谐波分量,即谐波功率谱密度,其是描述周期平稳噪声的时变二阶统计的确定性函数。 使用块结构矩阵方程,其将输出噪声统计与输入噪声统计相关联。 通过利用Toeplitz块结构,有效的噪声计算方法需要O(nN log N)计算时间和O(nN)存储器,其中n是电路尺寸,N是电路稳态中有效谐波的数量。 该方法使用任意形状的PSD(包括热,射击和闪烁噪声)成功处理设备噪声源,处理噪声输入相关性并计算不同输出之间的相关性。
    • 2. 发明授权
    • Low-displacement rank preconditioners for simplified non-linear analysis of circuits and other devices
    • 用于简化电路和其他设备的非线性分析的低位置等级预处理器
    • US06182270B2
    • 2001-01-30
    • US08975250
    • 1997-11-20
    • Peter FeldmannDavid Esley LongRobert C. Melville
    • Peter FeldmannDavid Esley LongRobert C. Melville
    • G06F1750
    • G06F17/12G06F17/5036
    • Methods and apparatus for performing non-linear analysis using preconditioners to reduce the computation and storage requirements associated with processing a system of equations. A circuit, system or other device to be analyzed includes n unknown waveforms, each characterized by N coefficients in the system of equations. A Jacobian matrix representative of the system of equations is generated. The Jacobian matrix may be in the form of an n×n sparse matrix of dense N×N blocks, such that each block is of size N2. In an illustrative embodiment, a low displacement rank preconditioner is applied to the Jacobian matrix in order to provide a preconditioned linear system. The preconditioner may be in the form of an n×n sparse matrix which includes compressed blocks which can be represented by substantially less than N2 elements. For example, the compressed blocks may each be in the form of a low displacement rank matrix corresponding to a product of two generator matrices having dimension N×&agr;, where &agr;
    • 使用预处理器执行非线性分析以减少与处理方程组相关联的计算和存储要求的方法和装置。 要分析的电路,系统或其他设备包括n个未知波形,每个未知波形的特征在于方程组中的N个系数。 生成表示方程组的雅可比矩阵。 雅可比矩阵可以是密集N×N块的n×n个稀疏矩阵的形式,使得每个块的大小为N 2。 在说明性实施例中,为了提供预处理的线性系统,将低位移等级预处理器应用于雅可比矩阵。 预处理器可以是nxn稀疏矩阵的形式,其包括可以由基本上小于N2个元素表示的压缩块。 例如,压缩块可以各自具有对应于尺寸为N×α的两个生成矩阵的乘积的低位移秩矩阵的形式,其中α<< N。 预处理的线性系统可以通过使用应用于压缩块的稀疏上下(LU)因式分解或其他类似的稀疏因式分解方法分解预处理器来解决。
    • 3. 发明授权
    • Efficient frequency domain analysis of large nonlinear analog circuits
using compressed matrix storage
    • 使用压缩矩阵存储的大型非线性模拟电路的高效频域分析
    • US5867416A
    • 1999-02-02
    • US832487
    • 1997-04-02
    • Peter FeldmannDavid Esley LongRobert C. Melville
    • Peter FeldmannDavid Esley LongRobert C. Melville
    • G06F17/16G06F17/50G06F17/00
    • G06F17/5036G06F17/16
    • Methods and apparatus for performing frequency domain analysis using compressed matrix storage to reduce the computation and storage requirements associated with processing a system of harmonic balance equations. A nonlinear circuit, system or other device to be analyzed includes n unknown node spectra, each characterized by N spectral coefficients in the system of harmonic balance equations. A compressed version of a Jacobian matrix J representing the system of harmonic balance equations is generated by forming m sequences of length N using one or more block-diagonal matrices associated with the Jacobian matrix J, converting each of the m sequences to the frequency domain using a discrete Fourier transform, such that a set of Fourier coefficients are generated for each of the m sequences, and storing only those Fourier coefficients which exceed a threshold as the compressed version of the Jacobian matrix J. Information generated from an inverse transform of the compressed version is utilized to solve a preconditioned linear system J.sup.-1 JZ=J.sup.-1 W which is based on an approximation J of the Jacobian matrix J.
    • 使用压缩矩阵存储进行频域分析的方法和装置,以减少与处理谐波平衡方程组相关联的计算和存储要求。 要分析的非线性电路,系统或其他设备包括n个未知节点频谱,每个特征在于谐波平衡方程系统中的N个频谱系数。 通过使用与雅可比矩阵J相关联的一个或多个块对角矩阵形成长度为N的m个序列来生成表示谐波平衡方程系统的雅可比矩阵J的压缩版本,其中将每个m个序列转换成频域,使用 离散傅立叶变换,使得对于m个序列中的每一个生成一组傅立叶系数,并且仅存储超过阈值的那些傅立叶系数作为雅可比矩阵J的压缩版本。从压缩的逆变换生成的信息 版本用于解决雅可比矩阵J的近似+ E,otl J + EE的预处理线性系统+ E,otl J + EE -1JZ = + E,otl J + EE-1W。
    • 4. 发明授权
    • Quadrature solutions for 3D capacitance extraction
    • 三维电容提取的正交解决方案
    • US06314545B1
    • 2001-11-06
    • US09187505
    • 1998-11-06
    • Sharad KapurDavid Esley Long
    • Sharad KapurDavid Esley Long
    • G06F1750
    • G06F17/5036G06F17/5018
    • The element to be simulated is divided into regions, and each region is further divided into a plurality of quadrature nodes. Pairs are formed for all the quadrature nodes. Green's functions are computed and stored for the pairs. Each of the pairs is allocated to either the far field or the near field for purposes of simulation in accordance with a criterion. A Gaussian quadrature is computed for the pairs allocated to the far field while a high order quadrature is computed for those allocated in the near field. The component simulation is arrived after combining information derived from the Gaussian quadrature and the high order quadrature into a matrix which is then solved to obtain the charge distribution. Summation of the charges thus obtained yields the capacitance of the element. The high order quadrature is computed using a plurality of basis functions. The basis functions, denoted &psgr;ik(r′), are 1,x,y,x2,xy,y2. The basis functions are used to compute a set of weights vjk. The weights are computed by solving ∑ j = 1 p ⁢ a ij ⁢ v j k = ∫ T k ⁢ G ⁡ ( r , r ′ ) ⁢ ψ i k ⁡ ( r ′ ) ⁢   ⁢ ⅆ r ′ , where &psgr;ik(r′) are the basis functions, G(r,r′) are the Green's functions for each of the pairs allocated to the near field separated by a distance r-r′, and aij is a matrix satisfying the relationship aij=G(r,rjk)&psgr;i(rjk) and where index k counts the regions in the near field Tk, index i counts the number of pairs, and index j counts up to a number p of the quadrature nodes in the near field. The advantage of this approach is that a fast solution to an integral equation descriptive of the element to be simulated can be achieved in exchange for constructing quadratures.
    • 要被模拟的元件被划分为区域,并且每个区域进一步被分成多个正交节点。 形成对所有正交节点的对。 绿色的功能被计算和存储成对。 根据标准,为了模拟的目的,将每个对分配给远场或近场。 对于分配给远场的对,计算高斯正交,而对于在近场分配的那些,计算高阶正交。 将从高斯正交和高阶正交导出的信息合并成一个矩阵,然后求解得到电荷分布,得到分量模拟。 由此获得的电荷的求和得到元件的电容。使用多个基函数计算高阶正交。 基函数,表示为psiik(r'),为1,x,y,x2,xy,y2。 基函数用于计算一组权重vjk。 权重通过求解来计算,其中psiik(r')是基函数,G(r,r')是分配给距离r-r'分隔的近场的每对对象的格林函数,而aij是 满足关系的矩阵,其中索引k对近场Tk中的区域进行计数,索引i对对的数目进行计数,并且索引j计数到近场中的正交节点的数量p。该方法的优点是 可以实现描述要模拟元素的积分方程的快速解,以交换构造正交。
    • 6. 发明授权
    • Efficient electromagnetic full-wave simulation in layered semiconductor media
    • 分层半导体介质中有效的电磁全波模拟
    • US06513001B1
    • 2003-01-28
    • US09317118
    • 1999-05-24
    • Sharad KapurDavid Esley Long
    • Sharad KapurDavid Esley Long
    • G06F1710
    • G06F17/5036G06F17/5018
    • Apparatus and method for simulating a component, where the component is conducting a current density, are disclosed. In one embodiment, the method includes discretizing the component into a plurality of triangular elements, and computing Green's functions descriptive of the relationship of the elements discretizing the component. In addition, the method includes computing basis functions relating to the elements, where the basis functions decompose the current density into divergence free and curl free parts, and the curl free parts are computed using a spanning tree. The method further includes combining the Green's functions and the basis functions to calculate a value representing a current density of said component. In one embodiment, the apparatus includes components configured to discretize the components, process Green's functions, compute basis functions, and combine the Green's functions and the basis functions to arrive at the value.
    • 公开了用于模拟部件正在传导电流密度的部件的装置和方法。 在一个实施例中,该方法包括将分量离散成多个三角形元素,以及计算格林函数描述离散化分量的元素的关系。 此外,该方法包括计算与元件相关的基函数,其中基函数将当前密度分解为无分叉和无卷曲部分,并且使用生成树计算无卷曲部分。 该方法还包括组合格林函数和基函数以计算表示所述分量的电流密度的值。 在一个实施例中,该装置包括配置成离散化组件,处理Green的功能,计算基本功能以及组合Green的功能和基本功能以获得该值的组件。
    • 7. 发明授权
    • Efficient three dimensional extraction
    • 有效的三维提取
    • US6051027A
    • 2000-04-18
    • US116158
    • 1998-07-16
    • Sharad KapurDavid Esley LongJingsong Zhao
    • Sharad KapurDavid Esley LongJingsong Zhao
    • G06F17/50
    • G06F17/5036G06F17/5018G06F2217/40
    • A layered structure is divided into a plurality of regions. Transmission line equivalents (Green's functions) in the spectral domain are formed between all regions within the layered structure. The spectral domain Greens' function are converted to the spatial domain using a near field and a far field computed for those regions part of a component within the layered structure. The far field is extracted from a compressed database computed from the transmission line equivalents and descriptive of the layered structure. The near field is computed using a prioritization mechanism. Priority is assigned in accordance with the amplitude of a source and the length of the path between regions of interest.Once the physical characteristics of the layers used in the fabrication process of the IC are identified, the database used for computation of the far field is compiled and compressed, and remains unchanged for each new parameter extraction. Thus, compressed, layered Green's functions in the database decouple the computation of the far field from the layer structure and circuit geometry, minimizing computation time.
    • 分层结构分为多个区域。 在分层结构中的所有区域之间形成光谱域中的传输线当量(绿色函数)。 使用为分层结构内的部件的那些区域计算的近场和远场来将频域绿色函数转换为空间域。 从从传输线等效物计算的压缩数据库中提取远场,并描述分层结构。 使用优先化机制计算近场。 根据源的幅度和感兴趣区域之间的路径的长度来分配优先级。 一旦确定了在IC制造过程中使用的层的物理特性,则用于远场计算的数据库被编译和压缩,并且对于每个新的参数提取保持不变。 因此,在数据库中压缩分层的Green的功能将远场的计算与层结构和电路几何分离,从而最小化计算时间。