会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Defrosting method and apparatus for freezer-refrigerator using GA-fuzzy
theory
    • 使用GA模糊理论的冷冻冰箱除霜方法和装置
    • US5673565A
    • 1997-10-07
    • US531088
    • 1995-09-20
    • Seong-wook JeongJae-in KimYun-seok Kang
    • Seong-wook JeongJae-in KimYun-seok Kang
    • F25D21/00F25D21/08G05B13/02G05B15/02G06F9/44G06N7/02F25D21/06
    • F25D21/006F25D2400/04F25D2500/04F25D2700/02F25D2700/12F25D2700/122F25D2700/14
    • There are described a defrosting method and apparatus for a freezer-refrigerator using a GA-fuzzy theory. A defrosting method for a freezer-refrigerator using a GA-fuzzy theory of the present invention comprises the step of: inputting reference learning data by experiment and actual data to a microcomputer; calculating each frost-quantity on evaporators for a freezing room and a cold-storage room from the input data; inferring each defrosting period for the freezing room and cold-storage room from each frost-quantity on the evaporators for the freezing room and cold-storage room by using a GA-fuzzy theory so that the defrosting periods can be synchronized with each other; and controlling a defrosting heater depending on each defrosting period. According to the present invention, a freezer-refrigerator can be defrosted by calculating each defrosting period of the freezing room and cold-storage room with precision and accuracy even at an input function which has many inflexion points and is impossible to differentiate, which is different from the conventional defrosting method using the crisp's logical algorithm consisting of `0` and `1`.
    • 描述了使用GA-模糊理论的冷冻冷藏柜的除霜方法和装置。 使用本发明的GA模糊理论的冷冻机的除霜方法包括以下步骤:通过实验和实际数据将参考学习数据输入到微型计算机; 从输入数据计算冷冻室和冷藏室的蒸发器上的每个霜冻量; 通过使用GA模糊理论推断冷冻室和冷藏室蒸发器上每个霜冻量的冷冻室和冷藏室的每个除霜期,使除霜期间相互同步; 并且根据每个除霜周期来控制除霜加热器。 根据本发明,即使在具有许多拐点的输入功能也不可能区分的情况下,通过精确地和精确地计算冷冻室和冷藏室的每个除霜周期并且不可能区分,可以解冻冷冻机 从使用由“0”和“1”组成的crisp逻辑算法的常规除霜方法。
    • 3. 发明授权
    • Temperature controlling method for refrigerator and apparatus therefor
    • 冰箱及其设备的温度控制方法
    • US5743104A
    • 1998-04-28
    • US820339
    • 1997-03-12
    • Jae-in KimYun-seok KangSeong-wook Jeong
    • Jae-in KimYun-seok KangSeong-wook Jeong
    • G05D23/00F25D17/06F25D17/08F25D29/00G05D23/19
    • F25D17/065F25D29/00G05D23/1932F25D2317/0653F25D2317/0672F25D2400/04F25D2700/122F25D2700/123F25D2700/14
    • A temperature controlling method for a refrigerator and an apparatus therefor are provided, in which a sensing error between temperature sensors is corrected, thereby maintaining the interior temperature of the refrigeration compartment in equilibrium. The temperature controlling method includes the steps of: sensing temperatures of the different locations within the refrigeration compartment using the plurality of temperature sensors several times when the temperatures in the refrigeration compartment are in equilibrium; calculating the average temperatures of the respective temperature sensors from a number of the temperatures respectively sensed by the plurality of temperature sensors; selecting one of the plurality of temperature sensors as a reference sensor and calculating error values of the average temperatures of the remaining temperature sensors with respect to that of the reference sensor; adding the error values of the respective temperature sensors to the temperatures directly sensed by the corresponding temperature sensors to obtain corrected temperature values; and controlling discharge of cool air based on the corrected temperature values. Also, the temperature controlling apparatus includes an operator for calculating corrected temperature values and a controller for controlling the discharge of the cool air.
    • 提供一种用于冰箱及其设备的温度控制方法,其中校正温度传感器之间的感测误差,从而保持冷藏室的内部温度平衡。 温度控制方法包括以下步骤:当冷藏室中的温度处于平衡状态时,使用多个温度传感器多次感测冷藏室内不同位置的温度; 从多个温度传感器分别感测的多个温度计算各个温度传感器的平均温度; 选择多个温度传感器中的一个作为参考传感器,并计算剩余温度传感器相对于参考传感器的平均温度的误差值; 将各个温度传感器的误差值加到由对应的温度传感器直接感测的温度以获得校正的温度值; 并基于校正的温度值控制冷气的排放。 此外,温度控制装置包括用于计算校正温度值的操作器和用于控制冷空气排放的控制器。
    • 4. 发明授权
    • Temperature controlling method of refrigerator using microprocessor
    • 使用微处理器的冰箱温度控制方法
    • US5592827A
    • 1997-01-14
    • US563927
    • 1995-11-29
    • Seong-wook JeongJae-in KimYun-seog Kang
    • Seong-wook JeongJae-in KimYun-seog Kang
    • F25D11/02F25D11/00G05D23/00G05D23/19G05D23/20G01K7/00G05D15/00
    • G05D23/20G05D23/1917
    • A temperature controlling method of a refrigerator by using a microprocessor includes the steps of: sampling digitized temperature values counted by an analog-to-digital converter according to a predetermined temperature range by a predetermined frequency by using the microprocessor; when the number (X') of a temperature value (X) counted with the most frequency is not less than a desired frequency, selecting the temperature value with the most frequency as a controlling temperature; when the number (X') of the temperature value (X) counted with the most frequency is less than the desired frequency, selecting a value obtained by adding/subtracting a predetermined temperature value which is less than the predetermined temperature range to/from the temperature value (X) with the most frequency as the controlling temperature; and selecting a temperature value obtained by applying the steps to at least two temperature values (Y) (Z) counted with the second most frequency and the third most frequency, as the controlling temperature. Quantitative sampling is carried out on the temperature value less than resolving power of a microprocessor, and a controlling temperature value is then obtained from the sampled value and used for controlling the inner temperature of the refrigerator, so that the inner temperature can be maintained in the optimal condition.
    • 通过使用微处理器的冰箱的温度控制方法包括以下步骤:通过使用微处理器,按照预定的频率,根据预定的温度范围对由模数转换器计数的数字化温度值进行采样; 当以最高频率计数的温度值(X)的数量(X')不小于期望频率时,以最多的频率选择温度值作为控制温度; 当以最大频率计数的温度值(X)的数量(X')小于期望频率时,选择通过将/预定的温度值小于预定温度范围的预定温度值加/减 频率最高的温度值(X)作为控制温度; 并且将通过将所述步骤应用于以第二最高频率和第三最高频率计数的至少两个温度值(Y)(Z)而获得的温度值作为控制温度。 对小于微处理器的分辨率的温度值进行定量取样,然后从采样值获得控制温度值,并用于控制冰箱的内部温度,从而可以保持内部温度 最佳条件。
    • 7. 发明授权
    • Cool air discharge controller for refrigerator and controlling method
thereof
    • 冰箱冷排气控制器及其控制方法
    • US5692383A
    • 1997-12-02
    • US563126
    • 1995-11-29
    • Seong-wook JeongJae-in KimYun-seog KangSuk-hang ParkYong-myoung Kim
    • Seong-wook JeongJae-in KimYun-seog KangSuk-hang ParkYong-myoung Kim
    • F25D17/08F25D11/02F25D17/04F25D17/06G05D23/00G05D23/19
    • F25D17/045F25D17/065G05D23/1917G05D23/1932F25D2317/061F25D2317/0653F25D2317/0682F25D2400/04F25D2700/02F25D2700/123F25D2700/14
    • A cool air discharge controller for a refrigerator and a controlling method thereof are provided. The cool air discharge controller includes: a front panel member which is installed at the rear wall of a refrigeration compartment of the refrigerator for providing a plurality of cool air discharge apertures; a rotary cool air discharge member detachably installed onto the front panel member, for dispersedly discharging the cool air into the refrigeration compartment; a driving motor installed at the upper portion of the rotary cool air discharge member for driving the rotary cool air discharge member; a position detecting switch installed at the upper portion of the rotary cool air discharge member, for defining a reference position of the rotary cool air discharge member; a grill cover detachably coupled to the front of the front panel member, for protecting the rotary cool air discharge member and guiding the cool air to be discharged; a thermal insulating member coupled at the rear side of the front panel member, for providing a loading position of a cool air guiding portion of the rotary cool air discharge member and a cool air flowing path; a damper baffle installed at the upper portion of the thermal insulating member, for controlling the amount of the cool air introduced into the refrigeration compartment; and a seal panel member coupled at the rear side of the thermal insulating member, for protecting the thermal insulating member by constituting a housing in cooperation with the front panel member. Thus, the cool air is dispersedly discharged by the rotary cool air discharge member.
    • 提供一种用于冰箱的冷空气放电控制器及其控制方法。 冷空气排放控制器包括:前面板构件,其安装在冰箱的冷藏室的后壁处,用于提供多个冷空气排放孔; 可拆卸地安装在前面板构件上的旋转冷却空气排放构件,用于将冷空气分散地排放到冷藏室中; 驱动电动机,其安装在所述旋转冷气排出部件的上部,用于驱动所述旋转冷却空气排出部件; 位置检测开关,其设置在所述旋转冷气排出部件的上部,用于限定所述旋转冷气排出部件的基准位置; 格栅盖,其可拆卸地联接到前面板构件的前部,用于保护旋转冷却空气排放构件并引导要排出的冷空气; 耦合在所述前面板构件的后侧的隔热构件,用于提供所述旋转冷却空气排放构件的冷空气引导部分和冷气流动路径的装载位置; 阻尼挡板,其安装在绝热构件的上部,用于控制引入冷藏室的冷空气量; 以及联接在隔热构件的后侧的密封面板构件,用于通过与前面板构件协作构成壳体来保护隔热构件。 因此,冷空气由旋转冷却空气排出构件分散排出。
    • 9. 发明授权
    • Data output buffer circuit with precharged bootstrap circuit
    • 数据输出缓冲电路与预置引导电路
    • US5241502A
    • 1993-08-31
    • US643285
    • 1991-01-22
    • Jang-kyu LeeSeong-wook Jeong
    • Jang-kyu LeeSeong-wook Jeong
    • G11C11/412G11C5/14G11C7/10G11C11/409H03K17/06H03K19/00H03K19/017H03K19/0175H03K19/094
    • G11C7/1057G11C5/145G11C7/1051G11C7/106H03K17/063H03K19/01714
    • A data output buffer circuit includes a pair of data lines respectively applied with a noninverted data signal and an inverted data signal and an output gate circuit for gating the noninverted and inverted data signals in response to an output enable signal. A pull-up/pull-down NMOS transistor pair is connected in series between a first supply voltage and a ground voltage. A supply voltage converter circuit generates a constant second supply voltage so long as said first supply voltage is above a predetermined minimum level. A bootstrap circuit is precharged by the second supply voltage for driving the pull-up NMOS transistor with a boosted voltage level when the non-inverted data signal is a logic "HIGH" state. The bootstrap circuit includes a first NMOS transistor, a main capacitor, a secondary capacitor, second and third NMOS transistors to precharge the secondary capacitor, an overcurrent limit circuit for limiting overcurrent into the secondary capacitor, a first CMOS inverter for transferring the boosted voltage from the main capacitor to a gate electrode of the pull-up transistor during the logic "HIGH" state, and for transferring the ground voltage during a logic "LOW" state, and a second CMOS inverter for transferring the second supply voltage to a second terminal of the main capacitor during the logic "HIGH" state, and for transferring the ground voltage thereto during the logic "LOW" state.
    • 数据输出缓冲电路包括分别施加有非反相数据信号和反相数据信号的一对数据线以及用于响应于输出使能信号选通非反相和反相数据信号的输出门电路。 上拉/下拉NMOS晶体管对串联在第一电源电压和接地电压之间。 只要所述第一电源电压高于预定最小电平,电源电压转换器电路产生恒定的第二电源电压。 当非反相数据信号为逻辑“高”状态时,自举电路由第二电源电压预充电,用于驱动具有升压电压电平的上拉NMOS晶体管。 自举电路包括第一NMOS晶体管,主电容器,次级电容器,用于对次级电容器进行预充电的第二和第三NMOS晶体管,用于限制过电流到次级电容器的过电流限制电路,用于将升压电压从第 在逻辑“高”状态下向上拉晶体管的栅电极施加主电容,并在逻辑“低”状态下传送接地电压的主电容器和用于将第二电源电压传送到第二端子的第二CMOS反相器 在逻辑“高”状态下,并且在逻辑“低”状态下将接地电压传送到主电容器。