会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • TECHNIQUES TO EFFICIENTLY COMPUTE ERASURE CODES HAVING POSITIVE AND NEGATIVE COEFFICIENT EXPONENTS TO PERMIT DATA RECOVERY FROM MORE THAN TWO FAILED STORAGE UNITS
    • 有效地计算具有积极和负面的系统性能的有效代码的技术,允许数据恢复超过两个失败的存储单元
    • US20150347231A1
    • 2015-12-03
    • US14293791
    • 2014-06-02
    • VINODH GOPALERDINC OZTURK
    • VINODH GOPALERDINC OZTURK
    • G06F11/10H03M13/15
    • G06F11/1088G06F2211/1057H03M13/1515H03M13/159H03M13/373
    • Erasure code syndrome computation based on Reed Solomon (RS) operations in a Galois field to permit reconstruction of data of more than 2 failed storage units. Syndrome computation may be performed with coefficient exponents that consist of −1, 0, and 1. A product xD of a syndrome is computed as a left-shift of data byte D, and selective compensation based on the most significant bit of D. A product x−1D of a syndrome is computed as a right-shift of data byte D, and selective compensation based on the most significant bit of D. Compensation may include bit-wise XORing shift results with a constant derived from an irreducible polynomial associated with the Galois field. A set of erasure code syndromes may be computed for each of multiple nested arrays of independent storage units. Data reconstruction includes solving coefficients of the syndromes as a Vandermonde matrix.
    • 基于Galois域中的Reed Solomon(RS)操作的擦除码校验子计算,以允许重建超过2个故障存储单元的数据。 综合征计算可以用由-1,0和1组成的系数指数来执行。综合征的乘积xD被计算为数据字节D的左移,并且基于D的最高有效位的选择性补偿。 综合征的乘积x-1D被计算为数据字节D的右移,并且基于D的最高有效位的选择性补偿。补偿可以包括具有从与不相关的多项式相关联的不可约多项式得到的常数的逐位异或移位结果 伽罗瓦领域。 可以为独立存储单元的多个嵌套阵列中的每一个计算一组擦除代码综合征。 数据重建包括求解综合征的系数作为Vandermonde矩阵。
    • 4. 发明申请
    • METHOD FOR FAST LARGE-INTEGER ARITHMETIC ON IA PROCESSORS
    • 用于IA处理器的快速大整数算术的方法
    • US20140019725A1
    • 2014-01-16
    • US13707105
    • 2012-12-06
    • ERDINC OZTURKVINODH GOPALJAMES GUILFORD
    • ERDINC OZTURKVINODH GOPALJAMES GUILFORD
    • G06F9/30
    • G06F9/3001G06F7/52G06F7/523G06F7/544G06F9/30036G06F2207/5523
    • Methods, systems, and apparatuses are disclosed for implementing fast large-integer arithmetic within an integrated circuit, such as on IA (Intel Architecture) processors, in which such means include receiving a 512-bit value for squaring, the 512-bit value having eight sub-elements each of 64-bits and performing a 512-bit squaring algorithm by: (i) multiplying every one of the eight sub-elements by itself to yield a square of each of the eight sub-elements, the eight squared sub-elements collectively identified as T1, (ii) multiplying every one of the eight sub-elements by the other remaining seven of the eight sub-elements to yield an asymmetric intermediate result having seven diagonals therein, wherein each of the seven diagonals are of a different length, (iii) reorganizing the asymmetric intermediate result having the seven diagonals therein into a symmetric intermediate result having four diagonals each of 7×1 sub-elements of the 64-bits in length arranged across a plurality of columns, (iv) adding all sub-elements within their respective columns, the added sub-elements collectively identified as T2, and (v) yielding a final 512-bit squared result of the 512-bit value by adding the value of T2 twice with the value of T1 once. Other related embodiments are disclosed.
    • 公开了用于在诸如IA(Intel Architecture)处理器之类的集成电路内实现快速大整数运算的方法,系统和装置,其中这种装置包括接收512位的平方值,512位值具有 八个子元素,每个64位,并通过以下方式执行512位平方算法:(i)将八个子元素中的每一个本身相乘以产生八个子元素中的每一个的平方,八个子元素 - 集体标识为T1的元件,(ii)将八个子元素中的每一个乘以八个子元素中的其余七个子元素以产生其中具有七个对角线的不对称中间结果,其中七个对角线中的每一个为 (iii)将其中具有七个对角线的非对称中间结果重新组合成具有四个对角线的对称中间结果,每个对角线的长度为64位的7×1个子元素排列成跨越多个 列,(iv)将其所有列中的所有子元素加入集体标识为T2的所添加的子元素,以及(v)通过将T2值增加两次来产生512位值的最终512位平方结果 其T1值一次。 公开了其他相关实施例。