会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Millimeter wave arrays using Rotman lens and optical heterodyne
    • 使用Rotman镜头和光学外差的毫米波阵列
    • US5677697A
    • 1997-10-14
    • US608589
    • 1996-02-28
    • J. J. LeeWillie W. NgGregory L. Tangonan
    • J. J. LeeWillie W. NgGregory L. Tangonan
    • G02B3/00G01S7/03G01S7/282G01S13/42H01Q3/26H01Q15/00H01Q15/02H01Q19/00H01Q25/00H04B10/00H01Q3/22
    • G01S7/282H01Q15/02H01Q25/008H01Q3/2676G01S13/426G01S7/032
    • An optical heterodyne system provides the radiation source and beam scan control of a millimeter wave (MMW) array antenna. The heterodyne system is an optical feed system to produce the MMW by mixing the optical outputs from two lasers, distribute the signal source to an array of radiating elements through a Rotman lens and optical fibers, generate the differential phase shift for beam scan in the optical domain, change the beam direction by switching the input laser being used to illuminate the Rotman lens or by varying the frequency of one of the laser sources. The feed system includes a plurality n-1 lasers spaced along the transmit side of the lens, and a center laser disposed on the center axis of the transmit side. A l:n switch receives a command input to determine which of the n-1 lasers will operate. The beat frequency between the center laser operating frequency and that of the n-1 lasers is the MMW frequency. N optical receive elements are spaced along the output side of the Rotman lens and are connected to a corresponding photodetector by equal length optical fibers. The output of each photodetector is amplified and fed to a corresponding radiating element. The system also operates in a corresponding receive mode.
    • 光学外差系统提供毫米波(MMW)阵列天线的辐射源和波束扫描控制。 外差系统是通过混合来自两个激光器的光输出来产生MMW的光学馈送系统,通过Rotman透镜和光纤将信号源分布到辐射元件阵列,在光学器件中产生用于光束扫描的差分相移 通过切换用于照亮Rotman透镜的输入激光器或通过改变其中一个激光源的频率来改变光束方向。 馈送系统包括沿着透镜的发射侧间隔开的多个n-1个激光器,以及设置在发射侧的中心轴上的中心激光器。 l:n开关接收命令输入,以确定n-1激光器中的哪一个将工作。 中心激光器工作频率与n-1激光器之间的拍频是MMW频率。 N个光接收元件沿着Rotman透镜的输出侧间隔开,并且通过相等长度的光纤连接到相应的光电检测器。 每个光电检测器的输出被放大并馈送到相应的辐射元件。 该系统还以相应的接收模式工作。
    • 5. 发明授权
    • Low-profile, multi-band antenna module
    • 低调,多频段天线模块
    • US06989785B2
    • 2006-01-24
    • US10679572
    • 2003-10-06
    • Daniel F. SievenpiperGregory L. TangonanHui-Pin HsuRobert M. Riley, Jr.Gary J. Hanselman
    • Daniel F. SievenpiperGregory L. TangonanHui-Pin HsuRobert M. Riley, Jr.Gary J. Hanselman
    • G01S7/28
    • H01Q1/3233H01Q21/30H01Q23/00
    • A low-profile multi-band antenna module includes first and second antennas that transmit first and second radio frequency (RF) signals in a first and second RF band, respectively. A first RF multiplexer combines the first and second RF signals for transmission. The first antenna, second antenna, and first RF multiplexer are arranged on a panel. A transmission line communicates with the first RF multiplexer and transmits the first and second RF signals. A second RF multiplexer communicates with the transmission line and separates the first and second RF signals. At least one of the antennas communicates with an amplifier. The transmission line supplies direct current (DC) power to the amplifier. The first and second antenna are arranged on the panel in an orientation that minimizes electrical interference between the first and second antenna. A combination of the first and second antenna minimizes interference between the first and second RF band.
    • 低调多频带天线模块包括分别在第一和第二RF频带中发射第一和第二射频(RF)信号的第一和第二天线。 第一RF多路复用器组合用于传输的第一和第二RF信号。 第一天线,第二天线和第一RF多路复用器布置在面板上。 传输线与第一RF多路复用器通信,并发送第一和第二RF信号。 第二RF多路复用器与传输线通信并分离第一和第二RF信号。 至少一个天线与放大器通信。 传输线为放大器提供直流(DC)电源。 第一和第二天线以最小化第一和第二天线之间的电气干扰的方向布置在面板上。 第一和第二天线的组合使得第一和第二RF频带之间的干扰最小化。
    • 6. 发明授权
    • Amplifier for optical fiber communication link
    • 光纤通信链路放大器
    • US5283687A
    • 1994-02-01
    • US929193
    • 1992-10-01
    • Hai-Pin HsuRonald B. CheslerGregory L. Tangonan
    • Hai-Pin HsuRonald B. CheslerGregory L. Tangonan
    • G02B6/00G02F1/35H01S3/06H01S3/067H01S3/094H01S3/0941H01S3/10H04B10/16H04B10/17H04B10/20H04B10/24
    • H04B10/2912H01S3/06704H01S3/06754H01S3/0941H04B10/291H04B10/2971H01S3/06787H01S3/094003
    • A bidirectional optical fiber (12) amplifier suitable for use in a dual payout fiber-optic communication link (10) is disclosed herein. The inventive amplifier (12) is typically encasted in a shell or service loop, and is preferably connected between first and second optical fiber segments (18 and 20). The amplifier (12) includes a pump laser (102) for generating optical energy of a first wavelength. A wavelength selective optical coupler (82), in optical communication with the first fiber segment (18) and the pump laser (102), combines optical energy propagating through the first fiber segment (18) with the optical output of the pump laser (102). The amplifier (12) of the present invention further includes a doped optical fiber (114), optically connected between the wavelength selective optical coupler (82) and the second optical fiber segment (20), for amplifying optical energy within a predetermined wavelength spectrum passing therethrough. The inventive amplifier (12) may be advantageously employed within certain fiber-optic communication links in order to enhance optical signal strength.
    • 本文公开了适用于双支付光纤通信链路(10)的双向光纤(12)放大器。 本发明的放大器(12)通常被加工成壳或服务回路,并且优选地连接在第一和第二光纤段(18和20)之间。 放大器(12)包括用于产生第一波长的光能的泵激光器(102)。 与第一光纤段(18)和泵浦激光器(102)光学通信的波长选择光耦合器(82)将通过第一光纤段(18)传播的光能与泵激光器(102)的光输出相结合 )。 本发明的放大器(12)还包括光学连接在波长选择光耦合器(82)和第二光纤段(20)之间的掺杂光纤(114),用于放大经过预定波长光谱的光能 通过。 本发明的放大器(12)可以有利地用于某些光纤通信链路中,以便增强光信号强度。
    • 7. 发明授权
    • Growth of glass-clad single crystal fibers
    • 玻璃包覆单晶纤维的生长
    • US4847053A
    • 1989-07-11
    • US046015
    • 1987-05-05
    • Antonio PastorGregory L. Tangonan
    • Antonio PastorGregory L. Tangonan
    • C30B15/00
    • C30B15/00C30B29/54C30B29/60Y10S117/90Y10T117/102
    • Fine single crystals of low-melting point materials are prepared by slowly withdrawing a glass crystal growth capillary tube containing the material from a heating apparatus which precisely maintains the molten material at a temperature just above its melting point. Temperature control of the molten material in the crystal growth tube, prior to solidification, is attained by enclosing the crystal growth tube in a temperature control tube containing the molten material being solidified. Preferably, the inside diameter of the temperature control tube is slightly larger than the outside diameter of the crystal growth tube, and both tubes reach into a reservoir of the molten material to be grown as a crystal, so that the molten material is drawn upwardly into the crystal growth tube and the space between the crystal growth tube and the temperature control tube by capillary action.
    • 低熔点材料的细晶体通过从加热装置中缓慢抽出含有材料的玻璃晶体生长毛细管来制备,该加热装置精确地将熔融材料保持在高于其熔点的温度。 在凝固之前,晶体生长管中的熔融材料的温度控制通过将晶体生长管封闭在含有熔融材料固化的温度控制管中来实现。 优选地,温度控制管的内径稍微大于晶体生长管的外径,并且两个管到达要作为晶体生长的熔融材料的储存器中,使得熔融材料向上拉入 晶体生长管和通过毛细作用在晶体生长管和温度控制管之间的空间。
    • 10. 发明授权
    • Smart antenna system using microelectromechanically tunable dipole
antennas and photonic bandgap materials
    • 使用微机电可调谐偶极天线和光子带隙材料的智能天线系统
    • US5541614A
    • 1996-07-30
    • US416621
    • 1995-04-04
    • Juan F. LamGregory L. TangonanRichard L. Abrams
    • Juan F. LamGregory L. TangonanRichard L. Abrams
    • H01H59/00H01Q11/10H01Q15/00
    • H01Q11/10H01Q15/002H01Q15/0066H01H59/0009
    • An antenna system includes a set of symmetrically located center-fed and segmented dipole antennas embedded on top of a frequency selective photonic bandgap crystal. A two-dimensional array of microelectromechanical (MEM) transmission line switches is incorporated into the dipole antennas to connect the segments thereof. An MEM switch is located at the intersection between any two adjacent segments of the antenna arm. The segments can be connected (disconnected) by operating the switch in the closed (open) position. Appropriate manipulation or programming of the MEM switches will change the radiation pattern, scanning properties and resonance frequency of the antenna array. In addition, an MEM switch is inserted into the crystal to occupy a lattice site in the 3-dimensional crystal lattice. The crystal will have a broadband stopgap if the MEM switch operates in the closed position (perfect symmetry of the crystal), and will produce a narrowband absorption line inside the stopgap if the MEM switch is in the open position, thereby permitting change in real time of the frequency response of the crystal.
    • 天线系统包括嵌入在频率选择性光子带隙晶体顶部的对称定位的中心馈电和分段偶极天线的集合。 将微机电(MEM)传输线开关的二维阵列并入到偶极天线中以连接它们的段。 MEM开关位于天线臂的任何两个相邻段之间的相交处。 通过在闭合(打开)位置操作开关可以将段连接(断开)。 对MEM开关的适当的操作或编程将改变天线阵列的辐射图,扫描特性和谐振频率。 另外,将MEM开关插入到晶体中以占据3维晶格中的晶格位置。 如果MEM开关工作在闭合位置(晶体的完美对称性),则晶体将具有宽带停止点,并且如果MEM开关处于打开位置,将在停止位置内产生窄带吸收线,从而允许实时改变 的晶体的频率响应。