会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • ELECTRO-OPTIC GAIN CERAMIC AND LOSSLESS DEVICES
    • 电光增益陶瓷和无线设备
    • US20090168150A1
    • 2009-07-02
    • US12365150
    • 2009-02-03
    • Kewen Kevin LiHua JiangYingyin Kevin Zou
    • Kewen Kevin LiHua JiangYingyin Kevin Zou
    • H01S3/00
    • H01S3/16H01S3/09415H01S3/1611H01S3/163H01S3/1675
    • The present invention provides a neodymium doped, transparent electro-optic gain ceramic material consisting lead, zirconium, titanium and lanthanum. The electro-optic gain ceramic material either has a linear electro-optic coefficient or a quadratic electro-optic coefficient, which is greater than about 0.3×10−16 m2/V2 for the latter, a propagation loss of less than about 0.3 dB/mm, and an optical gain of great than 2 dB/mm at a wavelength of about 1064 nm while optically pumped by a 2 watts diode laser at a wavelength of 802 nm at 20° C. The present invention also provides electro-optic devices including a neodymium doped, transparent electro-optic gain ceramic material consisting lead, zirconium, titanium and lanthanum. The present invention also provides lossless optical devices and amplifiers with an operating wavelength in the range of 1040 nm to 1100 nm while optically pumped at a wavelength in the range of 794 nm to 810 nm. The materials and devices of the present invention are useful in light intensity, phase and polarization control at a wavelength of about 1060 nm.
    • 本发明提供一种由钕掺杂的透明电光增益陶瓷材料,其包括铅,锆,钛和镧。 电光增益陶瓷材料具有线性电光系数或二次电光系数,其对于后者大于约0.3×10 16 m 2 / V 2,传播损耗小于约0.3dB / mm ,并且在约1064nm的波长处的光增益大于2dB / mm,同时在20℃下通过2瓦特的二极管激光器在802nm的波长下进行光泵浦。本发明还提供了一种电光器件,包括: 钕掺杂的透明电光增益陶瓷材料,由铅,锆,钛和镧组成。 本发明还提供具有在1040nm至1100nm范围内的工作波长的无损光学器件和放大器,同时在794nm至810nm范围内的波长下进行光泵浦。 本发明的材料和装置在约1060nm波长的光强度,相位和极化控制中是有用的。
    • 4. 发明申请
    • Electro-optic gain ceramic and lossless devices
    • 电光增益陶瓷和无损设备
    • US20070285763A1
    • 2007-12-13
    • US11528166
    • 2006-09-27
    • Kewen Kevin LiHua JiangYingyin Kevin Zou
    • Kewen Kevin LiHua JiangYingyin Kevin Zou
    • H01S3/00
    • H01S3/16H01S3/09415H01S3/1611H01S3/163H01S3/1675
    • The present invention provides a neodymium doped, transparent electro-optic gain ceramic material consisting lead, zirconium, titanium and lanthanum. The electro-optic gain ceramic material either has a linear electro-optic coefficient or a quadratic electro-optic coefficient, which is greater than about 0.3×10−16 m2/V2 for the latter, a propagation loss of less than about 0.3 dB/mm, and an optical gain of great than 2 dB/mm at a wavelength of about 1064 nm while optically pumped by a 2 watts diode laser at a wavelength of 802 nm at 20° C. The present invention also provides electro-optic devices including a neodymium doped, transparent electro-optic gain ceramic material consisting lead, zirconium, titanium and lanthanum. The present invention also provides lossless optical devices and amplifiers with an operating wavelength in the range of 1040 nm to 1100 nm while optically pumped at a wavelength in the range of 794 nm to 810 nm. The materials and devices of the present invention are useful in light intensity, phase and polarization control at a wavelength of about 1060 nm.
    • 本发明提供一种由钕掺杂的透明电光增益陶瓷材料,其包括铅,锆,钛和镧。 电光增益陶瓷材料具有线性电光系数或二次电光系数,该系数大于约0.3×10 -6 / 2/2 对于后者来说,对于后者来说,小于约0.3dB / mm的传播损耗以及在大约1064nm的波长处大于2dB / mm的光学增益,而由2瓦特的二极管 在20℃下在802nm波长处的激光。本发明还提供了包括掺杂钕,透明电光增益陶瓷材料的电光器件,其包括铅,锆,钛和镧。 本发明还提供具有在1040nm至1100nm范围内的工作波长的无损光学器件和放大器,同时在794nm至810nm范围内的波长下进行光泵浦。 本发明的材料和装置在约1060nm波长的光强度,相位和极化控制中是有用的。
    • 6. 发明授权
    • Transparent electro-optic gain ceramics and devices
    • 透明电光增益陶瓷和器件
    • US07791791B2
    • 2010-09-07
    • US11825995
    • 2007-07-10
    • Hua JiangYingyin Kevin ZouKewen Kevin Li
    • Hua JiangYingyin Kevin ZouKewen Kevin Li
    • H01S3/00
    • H01S3/16C01G25/006C01P2002/50C01P2002/52C01P2002/72C01P2004/04H01S3/09415H01S3/1611H01S3/163H01S3/1675
    • The present invention provides a rare-earth ions doped, especially erbium and ytterbium doped transparent electro-optic gain ceramic material consisting lead, zirconium, titanium and lanthanum. The electro-optic gain ceramic material either has a linear electro-optic coefficient or a quadratic electro-optic coefficient, which is greater than about 0.3×10−16 m2/V2 for the latter, a propagation loss of less than about 0.3 dB/mm, and an optical gain of great than 1.5 dB/mm at a wavelength of about 1550 nm while optically pumped by a 1.4 watts diode laser at a wavelength of 970 nm at 20° C. The present invention also provides electro-optic devices including a rare-earth ions doped, especially erbium and ytterbium doped, transparent electro-optic gain ceramic material consisting lead, zirconium, titanium and lanthanum. The present invention also provides lossless optical devices and amplifiers with an operating wavelength in the range of 1450 nm to 1700 nm while optically pumped at a wavelength in the range of 880 nm to 1020 nm. The materials and devices of the present invention are useful in light intensity, phase and polarization control at a wavelength of about 1550 nm.
    • 本发明提供掺杂稀土离子,特别是铒和镱掺杂的透明电光增益陶瓷材料,其包括铅,锆,钛和镧。 电光增益陶瓷材料具有线性电光系数或二次电光系数,其对于后者大于约0.3×10 16 m 2 / V 2,传播损耗小于约0.3dB / 并且在约1550nm的波长处的光增益大于1.5dB / mm,同时在20℃下由波长为970nm的1.4瓦二极管激光器光泵浦。本发明还提供了一种电光器件,包括 掺杂稀土离子,特别是铒和镱掺杂的透明电光增益陶瓷材料,由铅,锆,钛和镧组成。 本发明还提供了工作波长在1450nm至1700nm范围内的无损光学器件和放大器,同时在880nm至1020nm的波长下进行光泵浦。 本发明的材料和装置在约1550nm波长的光强度,相位和极化控制中是有用的。
    • 7. 发明申请
    • Transparent electro-optic gain ceramics and devices
    • 透明电光增益陶瓷和器件
    • US20080151358A1
    • 2008-06-26
    • US11825995
    • 2007-07-10
    • Hua JiangYingyin Kevin ZouKewen Kevin Li
    • Hua JiangYingyin Kevin ZouKewen Kevin Li
    • G02F1/055C01F17/00
    • H01S3/16C01G25/006C01P2002/50C01P2002/52C01P2002/72C01P2004/04H01S3/09415H01S3/1611H01S3/163H01S3/1675
    • The present invention provides a rare-earth ions doped, especially erbium and ytterbium doped transparent electro-optic gain ceramic material consisting lead, zirconium, titanium and lanthanum. The electro-optic gain ceramic material either has a linear electro-optic coefficient or a quadratic electro-optic coefficient, which is greater than about 0.3×10−16 m2/V2 for the latter, a propagation loss of less than about 0.3 dB/mm, and an optical gain of great than 1.5 dB/mm at a wavelength of about 1550 nm while optically pumped by a 1.4 watts diode laser at a wavelength of 970 nm at 20° C. The present invention also provides electro-optic devices including a rare-earth ions doped, especially erbium and ytterbium doped, transparent electro-optic gain ceramic material consisting lead, zirconium, titanium and lanthanum. The present invention also provides lossless optical devices and amplifiers with an operating wavelength in the range of 1450 nm to 1700 nm while optically pumped at a wavelength in the range of 880 nm to 1020 nm. The materials and devices of the present invention are useful in light intensity, phase and polarization control at a wavelength of about 1550 nm.
    • 本发明提供掺杂稀土离子,特别是铒和镱掺杂的透明电光增益陶瓷材料,其包括铅,锆,钛和镧。 电光增益陶瓷材料具有线性电光系数或二次电光系数,该系数大于约0.3×10 -6 / 2/2 对于后者来说,对于后者来说,小于约0.3dB / mm的传播损耗以及在大约1550nm的波长处大于1.5dB / mm的光学增益,而由1.4瓦的二极管 在20℃波长为970nm的激光器。本发明还提供了包括稀土离子掺杂的电光器件,特别是掺杂铒和镱的透明电光增益陶瓷材料,其包括铅,锆,钛和镧 。 本发明还提供了工作波长在1450nm至1700nm范围内的无损光学器件和放大器,同时在880nm至1020nm的波长下进行光泵浦。 本发明的材料和装置在约1550nm波长的光强度,相位和极化控制中是有用的。
    • 9. 发明授权
    • Polarization imaging apparatus
    • 极化成像装置
    • US07701561B2
    • 2010-04-20
    • US11701738
    • 2007-02-02
    • Yingyin Kevin ZouQiushui ChenHongzhi Zhao
    • Yingyin Kevin ZouQiushui ChenHongzhi Zhao
    • G01N21/00
    • G01N21/21
    • A polarization imaging apparatus measures the Stokes image of a sample. The apparatus consists of an optical lens set 11, a linear polarizer 14 with its optical axis 18, a first variable phase retarder 12 with its optical axis 16 aligned 22.5° to axis 18, a second variable phase retarder 13 with its optical axis 17 aligned 45° to axis 18, a imaging sensor 15 for sensing the intensity images of the sample, a controller 101 and a computer 102. Two variable phase retarders 12 and 13 were controlled independently by a computer 102 through a controller unit 101 which generates a sequential of voltages to control the phase retardations of VPRs 12 and 13. A set of four intensity images, I0, I1, I2 and I3 of the sample were captured by imaging sensor 15 when the phase retardations of VPRs 12 and 13 were set at (0,0), (π,0), (π,π) and (π/2,π), respectively Then four Stokes components of a Stokes image, S0, S1, S2 and S3 were calculated using the four intensity images.
    • 偏振成像装置测量样品的斯托克斯图像。 该装置由光学透镜组11,具有其光轴18的线性偏振器14,其光轴16与轴线18对准22.5°的第一可变相位延迟器12,其光轴17对准的第二可变相位延迟器13 与轴线18成45°的角度,用于感测样品的强度图像,控制器101和计算机102的成像传感器15.两个可变相位延迟器12和13由计算机102通过控制器单元101独立地控制,控制器单元101产生顺序 的电压以控制VPR 12和13的相位延迟。当VPR 12和13的相位延迟设置为(0)时,由成像传感器15捕获一组样本的四个强度图像I0,I1,I2和I3 ,(&pgr;,0),(&pgr;,&pgr)和(&pgr; / 2,&pgr))分别使用以下方法计算斯托克斯图像S0,S1,S2和S3的四个斯托克斯分量 四个强度图像。
    • 10. 发明申请
    • Polarization Imaging Apparatus with Auto-Calibration
    • 带自动校准的偏振成像设备
    • US20100201969A1
    • 2010-08-12
    • US12763173
    • 2010-04-19
    • Yingyin Kevin ZouHongzhi ZhaoQiushui Chen
    • Yingyin Kevin ZouHongzhi ZhaoQiushui Chen
    • G01N21/00
    • G01N21/21
    • A polarization imaging apparatus measures the Stokes image of a sample. The apparatus consists of an optical lens set, a first variable phase retarder (VPR) with its optical axis aligned 22.5°, a second variable phase retarder with its optical axis aligned 45°, a linear polarizer, a imaging sensor for sensing the intensity images of the sample, a controller and a computer. Two variable phase retarders were controlled independently by a computer through a controller unit which generates a sequential of voltages to control the phase retardations of the first and second variable phase retarders. A auto-calibration procedure was incorporated into the polarization imaging apparatus to correct the misalignment of first and second VPRs, as well as the half-wave voltage of the VPRs. A set of four intensity images, I0, I1, I2 and I3 of the sample were captured by imaging sensor when the phase retardations of VPRs were set at (0,0), (π,0), (π,π) and (π/2,π), respectively. Then four Stokes components of a Stokes image, S0, S1, S2 and S3 were calculated using the four intensity images.
    • 偏振成像装置测量样品的斯托克斯图像。 该装置由光学透镜组,其光轴对准22.5°的第一可变相位延迟器(VPR),其光轴对准45°的第二可变相位延迟器,线性偏振器,用于感测强度图像的成像传感器 的样品,控制器和计算机。 两个可变相位延迟器由计算机通过控制器单元独立控制,该控制器单元产生一个电压序列,以控制第一和第二可变相位延迟器的相位延迟。 自动校正程序被并入到偏振成像装置中以校正第一和第二VPR的偏移以及VPR的半波电压。 当VPR的相位延迟设定为(0,0),(&pgr;,0),(&pgr;,&pgr;)时,通过成像传感器捕获一组四个强度图像I0,I1,I2和I3。 )和(&pgr; / 2,&pgr;)。 然后使用四个强度图像计算斯托克斯图像S0,S1,S2和S3的四个斯托克斯分量。