会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Spin valve transistor using a magnetic tunnel junction
    • 旋转阀晶体管使用磁性隧道结
    • US06480365B1
    • 2002-11-12
    • US09458543
    • 1999-12-09
    • Hardayal (Harry) Singh GillDouwe Johannes Monsma
    • Hardayal (Harry) Singh GillDouwe Johannes Monsma
    • G11B5127
    • B82Y25/00B82Y10/00G11B5/332G11B5/3903G11B5/3909G11B5/3967
    • A spin valve transistor sensor is provided having a emitter element, a collector element and a common base element. The negatively biased emitter element injects a spin polarized hot electron current into the base element by tunneling from a ferromagnetic pinned layer to a ferromagnetic free layer through a first tunnel barrier layer. The positively biased collector element, comprising a second tunnel barrier layer and a nonmagnetic metal layer, collects the fraction of the hot electron current that passes through the base element and over the barrier height of the second tunnel barrier layer. The hot electron current is strongly spin polarized and due to the GMR effect in the magnetic tunnel junction element, the magnitude of the base-collector current is strongly dependent on external magnetic (signal) fields. A process is provided for fabrication of a spin valve transistor sensor suitable for high density magnetic recording applications.
    • 提供了具有发射极元件,集电极元件和公共基底元件的自旋阀晶体管传感器。 负偏置的发射极元件通过穿过第一隧道势垒层从铁磁性钉扎层隧穿到铁磁自由层,将自旋极化的热电子流注入基体元件。 包含第二隧道势垒层和非磁性金属层的正偏置集电极元件收集穿过基体元件并在第二隧道势垒层的势垒高度上的热电子流的一部分。 热电子电流是强自旋极化的,并且由于磁性隧道结元件中的GMR效应,基极集电极电流的大小强烈依赖于外部磁(信号)场。 提供了一种制造适用于高密度磁记录应用的自旋阀晶体管传感器的方法。
    • 2. 发明授权
    • Co-Fe supermalloy free layer for magnetic tunnel junction heads
    • 用于磁隧道连接头的Co-Fe超合金自由层
    • US06788502B1
    • 2004-09-07
    • US09388885
    • 1999-09-02
    • Hardayal (Harry) Singh Gill
    • Hardayal (Harry) Singh Gill
    • G11B5139
    • B82Y25/00B82Y10/00G01R33/093G01R33/098G11B5/012G11B5/3163G11B5/3903G11B5/3909G11B5/3932G11B5/3967G11B2005/3996
    • A magnetic tunnel junction sensor is provided having a laminated free layer comprising a first sublayer formed of Co—Fe in contact with a spacer layer and a second sublayer formed of Ni—Fe—Mo. The Ni—Fe—Mo material of the second sublayer has a magnetocrystalline anisotropy constant, k, that is much smaller than that of Ni—Fe. Due to the small value of k of the Ni—Fe—Mo material used to fabricate the second sublayer of the free layer, the thickness of the Co—Fe first sublayer may be increased to improve manufacturability while retaining a low net stiffness of the free layer for high sensitivity of the MTJ sensor in response to signal fields from data magnetically recorded on a disk. The thicker Co—Fe first sublayer results in a higher magnetoresistance coefficient of the improved MTJ sensor.
    • 提供了具有层叠自由层的磁性隧道结传感器,该层叠自由层包括由与间隔层接触的Co-Fe形成的第一子层和由Ni-Fe-Mo形成的第二子层。 第二子层的Ni-Fe-Mo材料具有比Ni-Fe小得多的磁晶各向异性常数k。 由于用于制造自由层的第二子层的Ni-Fe-Mo材料的k值较小,可以增加Co-Fe第一子层的厚度以提高可制造性,同时保持自由层的低净刚度 层,用于响应于磁盘上记录在磁盘上的数据的信号场,MTJ传感器的高灵敏度。 较厚的Co-Fe第一子层导致改进的MTJ传感器的较高的磁阻系数。
    • 3. 发明授权
    • Giant magnetoresistive sensor with a high resistivity free layer
    • 具有高电阻率自由层的巨磁阻传感器
    • US06473278B1
    • 2002-10-29
    • US09629779
    • 2000-07-31
    • Hardayal (Harry) Singh Gill
    • Hardayal (Harry) Singh Gill
    • G11B539
    • B82Y25/00B82Y10/00G01R33/093G11B5/3903G11B5/3967
    • A spin valve (SV) magnetoresistive sensor is provided having an AP-pinned layer, a laminated ferromagnetic free layer and a non-magnetic electrically conductive spacer layer sandwiched between the AP-pinned layer and the free layer. The AP-pinned layer comprises first and second ferromagnetic layers separated by an antiparallel coupling (APC) layer. The laminated free layer comprises a third ferromagnetic layer of Co—Fe adjacent to the spacer layer and a fourth ferromagnetic layer of Co—Fe—Hf—O. The Co—Fe—Hf—O material of the fourth ferromagnetic layer has high resistivity resulting in reduced sense current shunting by the free layer. In addition, the metal oxide material of the fourth ferromagnetic layer is known to cause specular scattering of electrons. The reduced sense current shunting and the specular scattering of electrons both contribute to improving the GMR coefficient of the SV sensor.
    • 提供了一种自旋阀(SV)磁阻传感器,其具有夹在AP钉扎层和自由层之间的AP钉扎层,层叠铁磁自由层和非磁性导电间隔层。 AP钉扎层包括由反平行耦合(APC)层隔开的第一和第二铁磁层。 层压自由层包括邻近间隔层的Co-Fe的第三铁磁层和Co-Fe-Hf-O的第四铁磁层。 第四铁磁层的Co-Fe-Hf-O材料具有高电阻率,导致由自由层分流的感测电流减小。 此外,已知第四铁磁层的金属氧化物材料引起电子的镜面散射。 减小的感测电流分流和电子的镜面散射有助于提高SV传感器的GMR系数。
    • 5. 发明授权
    • Anti-parallel magnetization layers in the free layers and magnetization layers of a differential sensor read head
    • 反平行磁化层在自由层和磁化层中的差分传感器读头
    • US07643255B2
    • 2010-01-05
    • US11378824
    • 2006-03-17
    • Hardayal (Harry) Singh Gill
    • Hardayal (Harry) Singh Gill
    • G11B5/39
    • G11B5/3945G11B5/3932
    • One embodiment of the present invention is directed to a read head for a data storage device including a differential sensor for reading data from a data storage medium. The differential sensor includes a first and a second free layer. The magnetization of the free layers is anti-parallel. The read head also includes a first stabilization material disposed adjacent to the differential sensor. The first stabilization material includes a first hard magnet and a second hard magnet. The magnetization of the hard magnets is anti-parallel to each other. The read head also includes a second stabilization material disposed adjacent to the differential sensor. The second stabilization material includes a first hard magnet and a second hard magnet, wherein the magnetization of the hard magnets is anti-parallel to each other. The anti-parallel coupling of the first stabilization material and the second stabilization material enhances the anti-parallel magnetization of the free layers.
    • 本发明的一个实施例涉及一种用于数据存储装置的读取头,包括用于从数据存储介质读取数据的差分传感器。 差动传感器包括第一自由层和第二自由层。 自由层的磁化是反平行的。 读取头还包括邻近差分传感器设置的第一稳定材料。 第一稳定材料包括第一硬磁体和第二硬磁体。 硬磁体的磁化是彼此反平行的。 读取头还包括邻近差分传感器设置的第二稳定材料。 第二稳定材料包括第一硬磁体和第二硬磁体,其中硬磁体的磁化是彼此反平行的。 第一稳定材料和第二稳定材料的反平行耦合增强了自由层的反平行磁化。
    • 6. 发明授权
    • Spin valve head with multiple antiparallel coupling layers
    • 具有多个反平行耦合层的旋转阀头
    • US06219209B1
    • 2001-04-17
    • US09364327
    • 1999-07-29
    • Hardayal (Harry) Singh Gill
    • Hardayal (Harry) Singh Gill
    • G11B539
    • B82Y25/00B82Y10/00G11B5/3903G11B2005/0008G11B2005/0016G11B2005/3996
    • An antiparallel (AP)-pinned spin valve (SV) sensor is provided which has positive and negative read signal symmetry about a zero bias point of a transfer curve upon sensing positive and negative magnetic incursions of equal magnitude from a moving magnetic medium. The SV sensor includes a ferromagnetic free layer which has a magnetic moment which is free to rotate in first and second directions from a position which corresponds to the zero bias point upon sensing positive and negative magnetic incursions, respectively, an AP-pinned layer, an antiferromagnetic layer which pins the magnetic moment of the AP-pinned layer along a pinned direction, and a spacer layer sandwiched between the AP-pinned layer and the free layer. The AP-pinned layer includes at least two antiparallel coupling (APC) layers made of ruthenium interleaved between ferromagnetic pinned layers in order to effectively increase the ruthenium thickness while avoiding a decrease in the antiferromagnetic coupling between the ferromagnetic pinned layers. With this AP-pinned layer structure, the forces on the free layer that influence the bias point on the sensor transfer curve are oriented so that the combined effects of a demagnetization field and a sense current field are counterbalanced by the combined effects of an anisotropic magnetoresistive effect and a ferromagnetic coupling field resulting in near zero asymmetry of the read signal.
    • 提供了一种反平行(AP)固定自旋阀(SV)传感器,其在检测到来自移动磁介质的相等幅度的正和负磁入侵时,具有关于传输曲线的零偏置点的正和负读信号对称。 SV传感器包括铁磁自由层,其具有分别在检测到正和负磁入侵时分别从对应于零偏置点的位置在第一和第二方向上自由旋转的磁矩,AP钉扎层, 沿着钉扎方向引导AP钉扎层的磁矩的反铁磁层和夹在AP钉扎层和自由层之间的间隔层。 AP钉扎层包括在铁磁钉扎层之间交错的由钌制成的至少两个反并联耦合(APC)层,以便有效地增加钌厚度,同时避免铁磁性钉扎层之间的反铁磁耦合的降低。 利用这种AP钉扎层结构,影响传感器传递曲线上的偏置点的自由层上的力被定向成使得去磁场和感测电流场的组合效应由各向异性磁阻的组合效应抵消 效应和铁磁耦合场导致读信号的近零不对称性。
    • 7. 发明授权
    • Dual hybrid magnetic tunnel junction/giant magnetoresistive sensor
    • 双混合磁隧道结/巨磁阻传感器
    • US06473275B1
    • 2002-10-29
    • US09588849
    • 2000-06-06
    • Hardayal (Harry) Singh Gill
    • Hardayal (Harry) Singh Gill
    • G11B539
    • B82Y25/00B82Y10/00G01R33/093G01R33/098G11B5/3909G11B5/3951G11B5/3967G11B2005/3996
    • A dual hybrid magnetic tunnel junction (MTJ)/giant magnetoresistance (GMR) sensor is provided having an MTJ stack, a GMR stack and a common free layer. The MTJ stack includes a first antiferromagnetic (AFM) layer, an first antiparallel (AP)-pinned layer and a tunnel barrier layer. The GMR stack, operating in the current perpendicular to the plane (CPP) mode, includes a second AFM layer, a second AP-pinned layer and a spacer layer. The first and second AFM layers are set to pin the magnetizations of the first and second AP-pinned layers perpendicular to the ABS and in the same direction with respect to each other resulting in an additive response to a signal field of the MTJ and GMR stacks. The thickness of the spacer layer in the GMR stack is chosen to provide a negative ferromagnetic coupling field between the second AP-pinned layer and the free layer which opposes the positive ferromagnetic coupling field between the first AP-pinned layer and the free layer across the tunnel barrier layer. The net ferromagnetic coupling field at the free layer can be reduced to a small value resulting in an improved bias point for the free layer of the MTJ/GMR sensor.
    • 提供了具有MTJ堆叠,GMR堆叠和公共自由层的双重混合磁隧道结(MTJ)/巨磁阻(GMR)传感器。 MTJ堆叠包括第一反铁磁(AFM)层,第一反平行(AP)限界层和隧道势垒层。 以垂直于平面(CPP)模式的电流工作的GMR堆叠包括第二AFM层,第二AP钉扎层和间隔层。 第一和第二AFM层被设置成将垂直于ABS的第一和第二AP钉扎层的磁化相对于彼此沿着相同的方向引导,导致对MTJ和GMR堆叠的信号场的加性响应 。 选择GMR堆叠中的间隔层的厚度以在第二AP钉扎层和自由层之间提供负铁磁耦合场,该自由层与第一AP钉扎层和跨越第一AP钉扎层与自由层之间的正铁磁耦合场相对 隧道势垒层。 自由层的铁磁耦合场可以减小到较小的值,为MTJ / GMR传感器的自由层提供了改进的偏置点。
    • 8. 发明授权
    • Magnetic tunnel junction sensor with AP-coupled free layer
    • 具有AP耦合自由层的磁隧道结传感器
    • US06259586B1
    • 2001-07-10
    • US09389188
    • 1999-09-02
    • Hardayal (Harry) Singh Gill
    • Hardayal (Harry) Singh Gill
    • G11B539
    • B82Y25/00B82Y10/00G01R33/093G01R33/098G11B5/3903G11B5/3909G11B5/3967G11B2005/3996
    • A differential magnetic tunnel junction (MTJ) sensor is provided having a first MTJ stack, a second MTJ stack and a common AP-coupled free layer. The AP-coupled free layer comprises a ferromagnetic first sense layer and a ferromagnetic second sense layer with an antiferromagnetic coupling (APC) layer disposed between the two sense layers providing strong antiferromagnetic coupling. The thickness of the first sense layer is chosen to be different (greater or smaller) than the thickness of the second sense layer so that the AP-coupled free layer has a net magnetic moment oriented parallel to the ABS and free to rotate in the presence of a signal magnetic field. Antiferromagnetic (AFM) layers in the first and second MTJ stacks are set to pin the magnetizations of pinned layers in each stack perpendicular to the ABS and in the same direction with respect to one another. Having both AFM layers set in the same direction allows both AFM layers to be formed of the same antiferromagnetic material and both AFM layers may be set in the same process step during fabrication.
    • 提供了具有第一MTJ堆叠,第二MTJ堆叠和公共AP耦合自由层的差分磁隧道结(MTJ)传感器。 AP耦合自由层包括铁磁第一感测层和铁磁第二感测层,其中反铁磁耦合(APC)层设置在两个感测层之间,提供强反铁磁耦合。 第一感测层的厚度被选择为与第二感测层的厚度不同(更大或更小),使得AP耦合的自由层具有平行于ABS定向的网络磁矩并且在存在时自由旋转 的信号磁场。 第一和第二MTJ堆叠中的反铁磁(AFM)层被设置成在垂直于ABS并在彼此相同方向上的每个堆叠中钉扎被钉扎的磁化。 将两个AFM层设置在相同的方向上允许两个AFM层由相同的反铁磁材料形成,并且两个AFM层可以在制造期间被设置在相同的工艺步骤中。