会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • System and method for detection of multi-view/multi-pose objects
    • 用于检测多视点/多姿态对象的系统和方法
    • US20120002869A1
    • 2012-01-05
    • US13134885
    • 2011-06-20
    • Feng HanYing ShanHarpreet Singh SawhneyRakesh Kumar
    • Feng HanYing ShanHarpreet Singh SawhneyRakesh Kumar
    • G06K9/62
    • G06K9/6256
    • The present invention provides a computer implemented process for detecting multi-view multi-pose objects. The process comprises training of a classifier for each intra-class exemplar, training of a strong classifier and combining the individual exemplar-based classifiers with a single objective function. This function is optimized using the two nested AdaBoost loops. The first loop is the outer loop that selects discriminative candidate exemplars. The second loop, the inner loop selects the discriminative candidate features on the selected exemplars to compute all weak classifiers for a specific position such as a view/pose. Then all the computed weak classifiers are automatically combined into a final classifier (strong classifier) which is the object to be detected.
    • 本发明提供了一种用于检测多视点多姿态对象的计算机实现过程。 该过程包括针对每个类内样本的分类器的训练,强分类器的训练和将单个基于样本的分类器与单个目标函数组合。 使用两个嵌套的AdaBoost循环来优化此功能。 第一个循环是选择区分候选样本的外循环。 第二个循环,内循环选择所选样本上的鉴别候选特征,以计算特定位置(例如视图/姿态)的所有弱分类器。 然后将所有计算的弱分类器自动组合成最终分类器(强分类器),该分类器是要检测的对象。
    • 7. 发明授权
    • Method and apparatus for multi-view three dimensional estimation
    • 用于多视图三维估计的方法和装置
    • US06571024B1
    • 2003-05-27
    • US09336319
    • 1999-06-18
    • Harpreet Singh SawhneyRakesh KumarYanlin GuoJane AsmuthKeith James Hanna
    • Harpreet Singh SawhneyRakesh KumarYanlin GuoJane AsmuthKeith James Hanna
    • G06K932
    • G06T7/248G06T7/246G06T2207/10016G06T2207/30244
    • An apparatus and method for generating automated multi-view three dimensional pose and geometry estimation for the insertion of realistic and authentic views of synthetic objects into a real scene. A multi-view three dimensional estimation routine comprising the steps of feature tracking, pairwise camera pose estimation, computing camera pose for overlapping sequences and performing a global block adjustment to provide camera pose and scene geometric information for each frame of a scene. A match move routine may be used to insert a synthetic object into one frame of a video sequence based on the pose and geometric information of the frame, and calculate all other required object views of the synthetic object for the remaining frames using the pose and geometric information acquired as a result of the multi-view three dimensional estimation routine.
    • 一种用于产生用于将合成对象的真实和真实视图插入到真实场景中的自动多视图三维姿态和几何估计的装置和方法。 一种多视图三维估计程序,包括特征跟踪,配对摄像机姿态估计,重叠序列的计算摄像机姿态,以及执行全局块调整以为场景的每个帧提供摄像机姿态和场景几何信息的步骤。 可以使用匹配移动例程来基于帧的姿态和几何信息将合成对象插入到视频序列的一帧中,并且使用姿态和几何来计算剩余帧的合成对象的所有其他所需对象视图 作为多视图三维估计程序的结果获取的信息。
    • 9. 发明授权
    • Multi-view image registration with application to mosaicing and lens distortion correction
    • 多视图图像配准应用于镶嵌和镜头失真校正
    • US06173087B2
    • 2001-01-09
    • US08966776
    • 1997-11-10
    • Rakesh KumarHarpreet Singh SawhneyJames Russell Bergen
    • Rakesh KumarHarpreet Singh SawhneyJames Russell Bergen
    • G06K936
    • G06K9/32G06K2009/2045G06T3/0081G06T3/4038H04N19/23H04N19/597
    • An embodiment of the invention is a system and process for true multi-image alignment that does not rely on the measurements of a reference image being distortion free. For instance, lens distortion is a common imaging phenomenon. When lens distortion is present, none of the images can be assumed to be ideal. In an embodiment of the invention, all the images are modeled as intensity measurements represented in their respective coordinate systems, each of which is related to a reference coordinate system through an interior camera transformation and an exterior view transformation. Motion parameters determined in accordance with an embodiment of the invention dictate the position of the input frames within the reference frame. A reference coordinate system is used, but not a reference image. Motion parameters are computed to warp all input images to a virtual image mosaic in the reference coordinate system of the reference frame. Each pixel in the virtual image mosaic may be predicted by intensities at corresponding pixel positions from more than one image. The error measure, which is the sum of the variances of predicted pixel intensities at each pixel location summed over the virtual image mosaic, is minimized. The embodiment of the invention advantageously maximally uses information present in all images.
    • 本发明的实施例是用于真正的多图像对准的系统和过程,其不依赖于无失真的参考图像的测量。 例如,镜头失真是常见的成像现象。 当存在透镜失真时,不能假定图像是理想的。 在本发明的一个实施例中,所有图像被建模为在它们各自的坐标系中表示的强度测量值,每个坐标系统通过内部照相机变换和外部视图变换与参考坐标系相关。 根据本发明的实施例确定的运动参数指示输入框在参考框架内的位置。 使用参考坐标系,而不是参考图像。 计算运动参数以将所有输入图像扭曲成参考框架的参考坐标系中的虚拟图像马赛克。 可以通过来自多于一个图像的相应像素位置处的强度来预测虚拟图像镶嵌中的每个像素。 误差测量值是在虚拟图像镶嵌中相加的每个像素位置处的预测像素强度的方差之和。 本发明的实施例有利地最大限度地利用存在于所有图像中的信息。