会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Integrated capacitor bottom electrode for use with conformal dielectric
    • 集成电容器底部电极,用于保形电介质
    • US06838338B2
    • 2005-01-04
    • US10378019
    • 2003-02-27
    • Gurtej S. SandhuJ. Brett Rolfson
    • Gurtej S. SandhuJ. Brett Rolfson
    • H01L21/02H01L21/8242H01L21/20
    • H01L27/10852H01L28/40H01L28/82H01L28/84H01L28/86H01L28/90
    • Disclosed is a capacitor construction for a more uniformly thick capacitor dielectric layer, and a method for fabricating the same. The method has special utility where the bottom electrode comprises composite layers over which the capacitor dielectric demonstrates differential growth during deposition. Exposed portions of an underlying first electrode layer, are covered either by a conductive or dielectric spacer, or by a dielectric padding. For the preferred embodiments, in which the bottom electrode comprises titanium carbonitride over rough polysilicon, a dielectric padding may be formed during a rapid thermal nitridation step, which causes silicon nitride to grow out of an exposed polysilicon sidewall. Alternatively, a sidewall spacer may be formed by deposition an additional layer of titanium nitride over the original titanim nitride strap, and performing a spacer etch.
    • 公开了一种用于更均匀地厚电容器电介质层的电容器结构及其制造方法。 该方法具有特殊用途,其中底部电极包括复合层,电容器电介质在其上显示沉积期间的差异生长。 下面的第一电极层的暴露部分由导电或介电间隔物或介质衬垫覆盖。 对于优选的实施方案,其中底部电极在粗多晶硅上包含碳氮化钛,可以在快速热氮化步骤期间形成介电填料,这导致氮化硅从露出的多晶硅侧壁生长出来。 或者,侧壁间隔物可以通过在原始钛酸盐氮化物带上沉积另外的氮化钛层而形成,并且执行间隔物蚀刻。
    • 3. 发明授权
    • Integrated capacitor bottom electrode for use with conformal dielectric
    • 集成电容器底部电极,用于保形电介质
    • US06211033B1
    • 2001-04-03
    • US08964946
    • 1997-11-05
    • Gurtej S. SandhuJ. Brett Rolfson
    • Gurtej S. SandhuJ. Brett Rolfson
    • H01L2170
    • H01L27/10852H01L28/40H01L28/82H01L28/84H01L28/86H01L28/90
    • Disclosed is a capacitor construction for a more uniformly thick capacitor dielectric layer, and a method for fabricating the same. The method has special utility where the bottom electrode comprises composite layers over which the capacitor dielectric demonstrates differential growth during deposition. Exposed portions of an underlying first electrode layer, are covered either by a conductive or dielectric spacer, or by a dielectric padding. For the preferred embodiments, in which the bottom electrode comprises titanium carbonitride over rough polysilicon, a dielectric padding may be formed during a rapid thermal nitridation step, which causes silicon nitride to grow out of an exposed polysilicon sidewall. Alternatively, a sidewall spacer may be formed by deposition an additional layer of titanium nitride over the original titanim nitride strap, and performing a spacer etch.
    • 公开了一种用于更均匀地厚电容器电介质层的电容器结构及其制造方法。 该方法具有特殊用途,其中底部电极包括复合层,电容器电介质在其上显示沉积期间的差异生长。 下面的第一电极层的暴露部分由导电或介电间隔物或介质衬垫覆盖。 对于优选的实施方案,其中底部电极在粗多晶硅上包含碳氮化钛,可以在快速热氮化步骤期间形成介电填料,这导致氮化硅从露出的多晶硅侧壁生长出来。 或者,侧壁间隔物可以通过在原始钛酸盐氮化物带上沉积另外的氮化钛层而形成,并且执行间隔物蚀刻。
    • 8. 发明授权
    • Memory cells, semiconductor device structures, memory systems, and methods of fabrication
    • 存储单元,半导体器件结构,存储器系统和制造方法
    • US08923038B2
    • 2014-12-30
    • US13527173
    • 2012-06-19
    • Witold KulaGurtej S. SandhuStephen J. Kramer
    • Witold KulaGurtej S. SandhuStephen J. Kramer
    • G11C11/15G11C11/00H01L29/82
    • H01L43/08G11C11/161H01L27/228H01L43/02H01L43/12
    • Methods of forming magnetic memory cells are disclosed. Magnetic and non-magnetic materials are formed into a primal precursor structure in an initial stress state of essentially no strain, compressive strain, or tensile strain. A stress-compensating material, e.g., a non-sacrificial, conductive material, is formed to be disposed on the primal precursor structure to form a stress-compensated precursor structure in a net beneficial stress state. Thereafter, the stress-compensated precursor structure may be patterned to form a cell core of a memory cell. The net beneficial stress state of the stress-compensated precursor structure lends to formation of one or more magnetic regions, in the cell core, exhibiting a vertical magnetic orientation without deteriorating a magnetic strength of the one or more magnetic regions. Also disclosed are memory cells, memory cell structures, semiconductor device structures, and spin torque transfer magnetic random access memory (STT-MRAM) systems.
    • 公开了形成磁存储器单元的方法。 磁性和非磁性材料在基本上没有应变,压缩应变或拉伸应变的初始应力状态下形成原始前体结构。 形成应力补偿材料,例如非牺牲导电材料,以设置在原始前体结构上以在净有益应力状态下形成应力补偿前体结构。 此后,应力补偿前体结构可以被图案化以形成存储单元的单元芯。 应力补偿前体结构的净有益应力状态有助于在电池芯中形成一个或多个磁性区域,呈现垂直磁性取向而不会使一个或多个磁性区域的磁强度恶化。 还公开了存储器单元,存储单元结构,半导体器件结构和自旋转矩传递磁随机存取存储器(STT-MRAM)系统。
    • 10. 发明授权
    • Trench isolation implantation
    • 沟槽隔离植入
    • US08686535B2
    • 2014-04-01
    • US12758488
    • 2010-04-12
    • Gurtej S. SandhuJohn A. Smythe, III
    • Gurtej S. SandhuJohn A. Smythe, III
    • H01L21/70
    • H01L21/76237G11C11/401H01L27/10844H01L27/11517
    • Embodiments of the disclosure include a shallow trench isolation structure having a dielectric material with energetic species implanted to a predetermined depth of the dielectric material. Embodiments further include methods of fabricating the trench structures with the implant of energetic species to the predetermined depth. In various embodiments the implant of energetic species is used to densify the dielectric material to provide a uniform wet etch rate across the surface of the dielectric material. Embodiments also include memory devices, integrated circuits, and electronic systems that include shallow trench isolation structures having the dielectric material with the high flux of energetic species implanted to the predetermined depth of the dielectric material.
    • 本公开的实施例包括浅沟槽隔离结构,其具有将能量物质注入电介质材料的预定深度的电介质材料。 实施例还包括使能量物质的植入物到预定深度制造沟槽结构的方法。 在各种实施例中,能量物质的注入用于致密化电介质材料,以提供穿过电介质材料表面的均匀的湿蚀刻速率。 实施例还包括存储器件,集成电路和电子系统,其包括浅沟槽隔离结构,其具有植入到介电材料的预定深度的高能量物质的高通量的电介质材料。