会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Self-modulation in a model-based automated management framework
    • 基于模型的自动化管理框架中的自调制
    • US07444272B2
    • 2008-10-28
    • US11250066
    • 2005-10-13
    • Guillermo A. AlvarezLinda M. DuyanovichJohn D. PalmerSandeep M. UttamchandaniLi Yin
    • Guillermo A. AlvarezLinda M. DuyanovichJohn D. PalmerSandeep M. UttamchandaniLi Yin
    • G06F17/10G06E1/00
    • G05B17/02G05B13/042
    • Embodiments herein present a method, system, computer program product, etc. for automated management using a hybrid of prediction models and feedback-based systems. The method begins by calculating confidence values of models. Next, the method selects a first model based on the confidence values and processes the first model through a constraint solver to produce first workload throttling values. Following this, workloads are repeatedly processed through a feedback-based execution engine, wherein the feedback-based execution engine is controlled by the first workload throttling values. The first workload throttling values are applied incrementally to the feedback-based execution engine, during repetitions of the processing of the workloads, with a step-size that is proportional to the confidence values. The processing of the workloads is repeated until an objective function is maximized, wherein the objective function specifies performance goals of the workloads.
    • 本文的实施例提出了使用预测模型和基于反馈的系统的混合的自动化管理的方法,系统,计算机程序产品等。 该方法从计算模型的置信度开始。 接下来,该方法基于置信度值选择第一模型,并通过约束求解器处理第一模型以产生第一工作负载节流值。 此后,通过基于反馈的执行引擎重复处理工作负载,其中基于反馈的执行引擎由第一工作负载节流值控制。 在重复处理工作负载期间,第一个工作负载限制值将逐步应用于基于反馈的执行引擎,步长与置信度值成比例。 重复处理工作负载直到目标函数最大化,其中目标函数指定工作负载的性能目标。
    • 2. 发明授权
    • Approach based on self-evolving models for performance guarantees in a shared storage system
    • 在共享存储系统中基于自演进模型进行性能保证的方法
    • US07640231B2
    • 2009-12-29
    • US11280012
    • 2005-11-16
    • Guillermo A. AlvarezJohn D. PalmerSandeep M. UttamchandaniLi Yin
    • Guillermo A. AlvarezJohn D. PalmerSandeep M. UttamchandaniLi Yin
    • G06F7/00
    • G06F9/50G06F9/5083Y10S707/99932
    • A technique of allocating shared resources in a computer network-based storage system comprises taking periodic performance samples on a running storage system; evaluating an objective function that takes as input the performance samples to quantify how aligned a current state of the storage system is with organizational objectives; building and maintaining models of behavior and capabilities of the storage system by using the performance samples as input; determining how resources of the storage system should be allocated among client computers in the storage system by selecting one among many possible allocations based on predictions generated by the models in order to maximize a value of the objective function; calculating a confidence statistic value for a chosen resource allocation based on an accuracy of the models; and enforcing the chosen resource allocation on the running storage system when the confidence statistic value is at or above a predetermined threshold value.
    • 在基于计算机网络的存储系统中分配共享资源的技术包括在正在运行的存储系统上采取周期性的性能样本; 评估一个目标函数,作为输入性能样本,以量化存储系统的当前状态与组织目标的一致性; 通过使用性能样本作为输入,建立和维护存储系统的行为和功能模型; 通过基于由模型生成的预测来选择许多可能的分配中的一个,以便最大化目标函数的值来确定应该在存储系统中的客户端计算机之间分配存储系统的资源; 基于模型的精度计算所选资源分配的置信度统计值; 以及当所述置信度统计值处于或高于预定阈值时,在所述运行存储系统上执行所选择的资源分配。
    • 5. 发明授权
    • Risk-modulated proactive data migration for maximizing utility in storage systems
    • 风险调控的主动数据迁移,以最大限度地提高存储系统的效用
    • US07752239B2
    • 2010-07-06
    • US12061764
    • 2008-04-03
    • Elizabeth S. RichardsSandeep M. UttamchandaniLi Yin
    • Elizabeth S. RichardsSandeep M. UttamchandaniLi Yin
    • G06F7/00
    • G06F3/0653G06F3/0605G06F3/0647G06F3/0683Y10S707/99953Y10S707/99955
    • The embodiments of the invention provide a method, computer program product, etc. for risk-modulated proactive data migration for maximizing utility. More specifically, a method of planning data migration for maximizing utility of a storage infrastructure that is running and actively serving at least one application includes selecting a plurality of potential data items for migration and selecting a plurality of potential migration destinations to which the potential data items can be moved. Moreover, the method selects a plurality of potential migration speeds at which the potential data items can be moved and selects a plurality of potential migration times at which the potential data items can be moved to the potential data migration destinations. The selecting of the plurality of potential migration speeds selects a migration speed below a threshold speed, wherein the threshold speed defines a maximum system utility loss permitted.
    • 本发明的实施例提供了一种用于风险调节的主动数据迁移的方法,计算机程序产品等,以最大化效用。 更具体地说,一种规划数据迁移以最大化正在运行并主动地为至少一个应用服务的存储基础设施的效用的方法包括:选择多个潜在数据项以进行迁移并选择多个潜在迁移目的地,潜在数据项 可以移动 此外,该方法选择可移动潜在数据项的多个潜在迁移速度,并选择潜在数据项能够移动到潜在数据迁移目的地的多个潜在迁移时间。 选择多个潜在迁移速度选择低于阈值速度的迁移速度,其中阈值速度定义允许的最大系统效用损失。
    • 7. 发明授权
    • Risk-modulated proactive data migration for maximizing utility in storage systems
    • 风险调控的主动数据迁移,以最大限度地提高存储系统的效用
    • US07552152B2
    • 2009-06-23
    • US11681971
    • 2007-03-05
    • Elizabeth S. RichardsSandeep M. UttamchandaniLi Yin
    • Elizabeth S. RichardsSandeep M. UttamchandaniLi Yin
    • G06F12/00
    • G06F3/0653G06F3/0605G06F3/0647G06F3/0683Y10S707/99953Y10S707/99955
    • The embodiments of the invention provide a method, computer program product, etc. for risk-modulated proactive data migration for maximizing utility. More specifically, a method of planning data migration for maximizing utility of a storage infrastructure that is running and actively serving at least one application includes selecting a plurality of potential data items for migration and selecting a plurality of potential migration destinations to which the potential data items can be moved. Moreover, the method selects a plurality of potential migration speeds at which the potential data items can be moved and selects a plurality of potential migration times at which the potential data items can be moved to the potential data migration destinations. The selecting of the plurality of potential migration speeds selects a migration speed below a threshold speed, wherein the threshold speed defines a maximum system utility loss permitted.
    • 本发明的实施例提供了一种用于风险调节的主动数据迁移的方法,计算机程序产品等,以最大化效用。 更具体地说,一种规划数据迁移以最大化正在运行并主动地为至少一个应用服务的存储基础设施的效用的方法包括:选择多个潜在数据项以进行迁移并选择多个潜在迁移目的地,潜在数据项 可以移动 此外,该方法选择可移动潜在数据项的多个潜在迁移速度,并选择潜在数据项能够移动到潜在数据迁移目的地的多个潜在迁移时间。 选择多个潜在迁移速度选择低于阈值速度的迁移速度,其中阈值速度定义允许的最大系统效用损失。
    • 8. 发明申请
    • RISK-MODULATED PROACTIVE DATA MIGRATION FOR MAXIMIZING UTILITY IN STORAGE SYSTEMS
    • 用于最大化存储系统中的实用程序的风险调整的主动数据迁移
    • US20080222644A1
    • 2008-09-11
    • US12061764
    • 2008-04-03
    • Elizabeth S. RichardsSandeep M. UttamchandaniLi Yin
    • Elizabeth S. RichardsSandeep M. UttamchandaniLi Yin
    • G06F9/50G06F12/00
    • G06F3/0653G06F3/0605G06F3/0647G06F3/0683Y10S707/99953Y10S707/99955
    • The embodiments of the invention provide a method, computer program product, etc. for risk-modulated proactive data migration for maximizing utility. More specifically, a method of planning data migration for maximizing utility of a storage infrastructure that is running and actively serving at least one application includes selecting a plurality of potential data items for migration and selecting a plurality of potential migration destinations to which the potential data items can be moved. Moreover, the method selects a plurality of potential migration speeds at which the potential data items can be moved and selects a plurality of potential migration times at which the potential data items can be moved to the potential data migration destinations. The selecting of the plurality of potential migration speeds selects a migration speed below a threshold speed, wherein the threshold speed defines a maximum system utility loss permitted.
    • 本发明的实施例提供了一种用于风险调节的主动数据迁移的方法,计算机程序产品等,以最大化效用。 更具体地说,一种规划数据迁移以最大化正在运行并主动地为至少一个应用服务的存储基础设施的效用的方法包括:选择多个潜在数据项以进行迁移并选择多个潜在迁移目的地,潜在数据项 可以移动 此外,该方法选择可移动潜在数据项的多个潜在迁移速度,并选择潜在数据项能够移动到潜在数据迁移目的地的多个潜在迁移时间。 选择多个潜在迁移速度选择低于阈值速度的迁移速度,其中阈值速度定义允许的最大系统效用损失。