会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Apparatus for measuring the inside diameter of a metallic pipe in a well
    • 用于测量井中金属管的内径的装置
    • US4546315A
    • 1985-10-08
    • US449015
    • 1982-12-13
    • Gerald N. MinerboGary A. Hazen
    • Gerald N. MinerboGary A. Hazen
    • E21B47/08G01N27/72G01B7/12
    • G01B7/10E21B47/082
    • A method and apparatus is disclosed for electrically measuring the inside diameter of a metallic pipe, such as oil or gas well casing. The transimpedance of two coaxial coils within the pipe is determined and then resolved into its inphase and quadrature components. The difference of the magnitudes of the two components is equal to an expansion equation which is a function of the inside diameter of the pipe and a factor proportional to the ratio of the permeability to the conductivity of the pipe. The inphase component of the impedance is equal to a second expansion equation which is a function of the inside diameter of the pipe and the factor proportional to the ratio of the permeability to the conductivity of the pipe. The two equations are solved simultaneously to generate signals for the pipe's inside diameter and the ratio of permeability to conductivity.
    • 公开了用于电测量诸如油或气井套管的金属管的内径的方法和装置。 确定管内两根同轴线圈的跨阻,然后分解成其同相和正交分量。 两个部件的大小的差异等于膨胀方程,该膨胀方程是管的内径的函数,并且是与导管与导电率的比率成比例的因子。 阻抗的同相分量等于第二膨胀方程,其是管的内径和与导管的导电率之比成比例的因子的函数。 同时求解这两个方程,以产生管道内径和渗透率与导电率之比的信号。
    • 4. 发明授权
    • Method and apparatus for producing a conductivity log unaffected by shoulder effect and dip from data developed by a well tool
    • 用于产生电导率对数的方法和装置,其不受肩部影响的影响,并且由井工具开发的数据倾斜
    • US06216089B1
    • 2001-04-10
    • US09391149
    • 1999-09-07
    • Gerald N. Minerbo
    • Gerald N. Minerbo
    • G01V338
    • G01V3/28G01V3/38
    • A method and apparatus for producing a conductivity log, unaffected by shoulder effect and dip, from voltage data developed by a well tool disposed in a borehole. The method involves accessing the voltage data developed by the tool, processing the data, reconstructing two-coil voltage data, and computing differences of the two-coil data, to derive a conductivity profile representative of the formation. The apparatus forms part of a well logging system including a well tool adapted to be moveable through a borehole. The apparatus being coupled to the well tool and adapted with means to access voltage data developed by the receivers disposed on the well tool. The apparatus further adapted with means for boosting the voltage data, means for reconstructing two-coil voltages from the boosted voltage data, means for processing the reconstructed two-coil voltage data, and means for producing a conductivity log from the processed two-coil voltages.
    • 一种用于通过设置在钻孔中的井工具产生的电压数据来产生不受肩部作用和倾角影响的电导率对数的方法和装置。 该方法涉及访问由工具开发的电压数据,处理数据,重建双线圈电压数据以及计算双线圈数据的差异,以导出代表形成的电导率分布。 该装置形成测井系统的一部分,其包括适于通过钻孔移动的井口工具。 该装置耦合到井工具并且适于接收由设置在井具上的接收器开发的电压数据的装置。 该装置还适用于升压电压数据的装置,用于从升压电压数据重建二线圈电压的装置,用于处理重建的双线圈电压数据的装置,以及用于从处理的二线圈电压产生电导率对数的装置 。
    • 5. 发明授权
    • Method and apparatus for producing a more accurate resistivity log from
data recorded by an induction sonde in a borehole
    • 用于从钻孔中的感应探头记录的数据产生更准确的电阻率对数的方法和装置
    • US5210691A
    • 1993-05-11
    • US698378
    • 1991-05-09
    • Robert FreedmanGerald N. Minerbo
    • Robert FreedmanGerald N. Minerbo
    • G01V3/28G01V3/38
    • G01V3/38G01V3/28
    • A maximum entropy method (MEM) determines a more accurate formation parameter profile, such as conductivity profile, of a formation. The MEM method employs an iterative procedure for determining the formation parameter profile. At each interation, theoretical logs are computed and compared with the measured log data. One iterative step is the calculation of a forward model to predict the response of the tool in a given assumed formation. Another iterative step is the solution of a set of linear equations to update the assumed formation parameter in the formation to produce closer agreement to the measured data. In a solution iterative step, the input is the measured values of the voltages denoted by V.sub.k.sup.j and the calculated values V.sub.k.sup.j, the output is an improved formation parameter profile .sigma..sub.l.sup.(n+1). In the solution step, a set of linear equations is solved for intermediate quantities q.sub.l.sup.(n), related to .sigma..sub.l.sup.(n) by the formula.sigma..sub.l.sup.(n) =.pi.exp(q.sub.l.sup.(n)),where .pi. is a constant. Upon completion of the solution step, the updated formation parameter profile .sigma..sub.l.sup.(n+1) is stored and the following inequality is tested to determine if it be true or not true:.vertline..sigma..sub.l.sup.(n+1) -.sigma..sub.l.sup.(n) .vertline./.sigma..sub.l.sup.(n)
    • 最大熵法(MEM)确定地层的更准确的地层参数轮廓,例如导电率剖面。 MEM方法采用迭代过程来确定地层参数剖面。 在每个交互中,计算理论日志并与测量的日志数据进行比较。 一个迭代步骤是计算一个前向模型,以预测在给定假设地层中该工具的响应。 另一个迭代步骤是一组线性方程的解,以更新地层中的假定地层参数,以产生与测量数据更接近的一致性。 在解迭代步骤中,输入是由Vkj表示的电压的测量值和计算值Vkj,输出是改进的地层参数剖面σ1(n + 1)。 在解决步骤中,通过公式sigma l(n)= pi exp(ql(n)),求解与Σ1(n)相关的中间量ql(n)的一组线性方程,其中pi是常数 。 在完成解决步骤之后,存储更新后的形成参数曲线sigma l(n + 1),并测试以下不等式,以确定是否为真:| sigma l(n + 1) - sigma l(n )| / sigma l(n)<<ε,其中ε是非常小的值。 如果上述不等式为真,则MEM软件终止其处理,而如果不等式不为真,则n增加1,并执行迭代过程的另一遍。 该过程重复重复,直到上述不等式为真。 选择地层的地层参数剖面是满足上述不等式的更新地层参数剖面σ1(n + 1)。
    • 7. 发明授权
    • Determining borehole corrected formation on properties
    • 确定钻孔校正结构的性质
    • US08571797B2
    • 2013-10-29
    • US12597977
    • 2008-05-08
    • Peter T. WuHanming WangGerald N. Minerbo
    • Peter T. WuHanming WangGerald N. Minerbo
    • G01V3/38
    • G01V13/00G01V1/50G01V3/38
    • A method to determine one or more borehole corrected formation properties using measurements made using a logging tool disposed in a borehole penetrating an earth formation is disclosed. The measurements are used to determine an apparent conductivity tensor for the formation and, for a set of parameters, a parameter value for each parameter in a subset of the set of parameters. A parameter value for each parameter in the set of parameters not in the subset is provided and a borehole-inclusive modeled conductivity tensor is computed. The apparent conductivity tensor and the borehole-inclusive modeled conductivity tensor are iteratively used to optimize the parameter values, and the optimized parameter values are used to compute an optimized conductivity tensor. A borehole corrected conductivity tensor is computed using the optimized conductivity tensor, and the borehole corrected formation properties are determined using the borehole corrected conductivity tensor and/or the optimized parameter values.
    • 公开了一种使用设置在穿透地层的钻孔中的测井工具进行的测量来确定一个或多个钻孔校正地层特性的方法。 测量用于确定形成的表观电导率张量,并且对于一组参数,确定该组参数的子集中的每个参数的参数值。 提供不在子集中的参数集中的每个参数的参数值,并计算包含井眼的建模的电导率张量。 迭代地使用表观电导率张量和含钻孔的建模的电导率张量来优化参数值,并且使用优化的参数值来计算优化的电导率张量。 使用优化的电导率张量计算钻孔校正的电导率张量,并且使用钻孔校正的电导率张量和/或优化的参数值来确定钻孔校正的形成性质。
    • 9. 发明申请
    • DETERMINING BOREHOLE CORRECTED FORMATION PROPERTIES
    • 确定孔洞修正形成特性
    • US20100198569A1
    • 2010-08-05
    • US12597977
    • 2008-05-08
    • Peter T. WuHanming WangGerald N. Minerbo
    • Peter T. WuHanming WangGerald N. Minerbo
    • G06G7/48
    • G01V13/00G01V1/50G01V3/38
    • A method to determine one or more borehole corrected formation properties using measurements made using a logging tool disposed in a borehole penetrating an earth formation is disclosed. The measurements are used to determine an apparent conductivity tensor for the formation and, for a set of parameters, a parameter value for each parameter in a subset of the set of parameters. A parameter value for each parameter in the set of parameters not in the subset is provided and a borehole-inclusive modeled conductivity tensor is computed. The apparent conductivity tensor and the borehole-inclusive modeled conductivity tensor are iteratively used to optimize the parameter values, and the optimized parameter values are used to compute an optimized conductivity tensor. A borehole corrected conductivity tensor is computed using the optimized conductivity tensor, and the borehole corrected formation properties are determined using the borehole corrected conductivity tensor and/or the optimized parameter values.
    • 公开了一种使用设置在穿透地层的钻孔中的测井工具进行的测量来确定一个或多个钻孔校正地层特性的方法。 测量用于确定形成的表观电导率张量,并且对于一组参数,确定该组参数的子集中的每个参数的参数值。 提供不在子集中的参数集中的每个参数的参数值,并计算包含井眼的建模的电导率张量。 迭代地使用表观电导率张量和含钻孔的建模的电导率张量来优化参数值,并且使用优化的参数值来计算优化的电导率张量。 使用优化的电导率张量计算钻孔校正的电导率张量,并且使用钻孔校正的电导率张量和/或优化的参数值来确定钻孔校正的形成性质。
    • 10. 发明授权
    • Method and apparatus for locating well casings from an adjacent wellbore
    • 从相邻井筒定位井壳的方法和装置
    • US08289024B2
    • 2012-10-16
    • US12897203
    • 2010-10-04
    • Brian ClarkChristophe DupuisGerald N. Minerbo
    • Brian ClarkChristophe DupuisGerald N. Minerbo
    • G01V3/00G01V3/12
    • G01V3/26E21B47/02216
    • A wellbore tool for locating a target wellbore containing a conductive member from a second wellbore and directing the trajectory of the second wellbore relative to the target wellbore includes an electric current driver having an insulated gap; a three-axis magnetometer positioned within a non-magnetic housing that is disposed within a non-magnetic tubular, the three-axis magnetometer positioned below the electric current driver; a drill bit positioned below the three-axis magnetometer; a hollow tubular connected between the electric current driver and the three-axis magnetometer; and a measurement-while-drilling tool. The current driver generates an electric current across the gap to the portion of the tool below the insulated gap. In a method a current is generated across the insulated gap to the portion of the tool below the insulated gap to the conductive material in the target wellbore returning to a portion of the bottom hole assembly above the insulated gap thereby producing a target magnetic field. Measuring the target magnetic field at the bottom hole assembly and the earth's magnetic field; and determining the position of the second wellbore relative to the target wellbore. Then steering the bottom hole assembly to drill the second wellbore along a trajectory relative to the target wellbore.
    • 用于从第二井筒定位包含导电构件并且相对于目标井筒引导第二井眼的轨迹的井眼工具包括具有绝缘间隙的电流驱动器; 位于非磁性壳体内的三轴磁力计,其设置在非磁性管内,位于电流驱动器下方的三轴磁力计; 位于三轴磁力计下方的钻头; 连接在电流驱动器和三轴磁力计之间的中空管; 和钻孔测量工具。 电流驱动器通过间隙产生电流到绝缘间隙下方的工具部分。 在一种方法中,跨绝缘间隙产生的电流跨越到绝缘间隙下方的工具部分到目标井眼中的导电材料,返回到绝缘间隙之上的一部分底孔组件,从而产生目标磁场。 测量井底组件和地球磁场的目标磁场; 以及确定第二井眼相对于目标井筒的位置。 然后转向底孔组件以沿相对于目标井筒的轨迹钻第二井眼。